The International Maritime Organization (IMO) had made effort to reduce the ship’s energy consumption and carbon emission by optimizing the ship’s operational measures such as speed and weather routing. However, existing fuel consumption models were relatively simple without considering the quantified effect of weather conditions. In this paper, a knowledge-based ridge regression-based algorithm is presented for enabling automated fuel consumption estimation under varying weather conditions during voyages. Wind speed, wave height, ship speed, draught, AIS segment distance, and ship’s heading (HDG) are used as input to predict the fuel consumption value from the MRV report. In this work, 3 types of models are tested: AIS-based model, MRV-based model, and MRV-based normalized model. In AIS based model, weather conditions are divided into nine categories based on wind speed, wave height, and wind directions then trained separately. In MRV-based mode, the daily weather condition was used, and the MRV-normalized model used the normalized daily weather data. The proposed ridge regression models (11 models total) were tested with 4 container ships for a period of one year, and the result shows that compared to real fuel consumption, MRV-based model could achieve the best result with an average error less than 3% comparing to real MRV report.
A multiple clustering algorithm based on high-dimensional automatic identification system (AIS) data is proposed to extract the important waypoints in the ship’s navigation trajectory based on selected AIS attribute features and construct a route network using the waypoints. The algorithm improves the accuracy of route network planning by using the latitude and longitude of the historical voyage trajectory and the heading to the ground. Unlike the navigation clustering method that only uses ship latitude and longitude coordinates, the algorithm first calculates the major waypoints using Clustering in QUEst (CLIQUE) and Balance Iterative Reducing and Clustering Using Hierarchies (BIRCH) algorithms, and then builds the route network using network construction. Under the common PC specification (i5 processor), this algorithm forms 440 major waypoints from 220,133 AIS data and constructs a route network with directional features in 5 min, which is faster in computing speed and more suitable for complex ship trajectory differentiation and can extend the application boundary of ship route planning.
A novel marine transportation network based on high-dimensional AIS data with a multi-level clustering algorithm is proposed to discover important waypoints in trajectories based on selected navigation features. This network contains two parts: the calculation of major nodes with CLIQUE and BIRCH clustering methods and navigation network construction with edge construction theory. Unlike the state-of-art work for navigation clustering with only ship coordinate, the proposed method contains more high-dimensional features such as drafting, weather, and fuel consumption. By comparing the historical AIS data, more than 220,133 lines of data in 30 days were used to extract 440 major nodal points in less than 4 minutes with ordinary PC specs (i5 processer). The proposed method can be performed on more dimensional data for better ship path planning or even national economic analysis. Current work has shown good performance on complex ship trajectories distinction and great potential for future shipping transportation market analytical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.