Inflammatory bowel diseases (IBD), composed mainly of Crohn’s disease (CD) and ulcerative colitis (UC), are strongly implicated in the development of intestinal inflammation lesions. Its exact etiology and pathogenesis are still undetermined. Recently accumulating evidence supports that group 3 innate lymphoid cells (ILC3) are responsible for gastrointestinal mucosal homeostasis through moderate generation of IL-22, IL-17, and GM-CSF in the physiological state. ILC3 contribute to the progression and aggravation of IBD while both IL-22 and IL-17, along with IFN-γ, are overexpressed by the dysregulation of NCR − ILC3 or NCR + ILC3 function and the bias of NCR + ILC3 towards ILC1 as well as regulatory ILC dysfunction in the pathological state. Herein, we feature the group 3 innate lymphoid cells’ development, biological function, maintenance of gut homeostasis, mediation of IBD occurrence, and potential application to IBD therapy.
One of the major problems influencing the therapeutic efficacy of stem cell therapy is the poor cell survival following transplantation. This is partly attributed to insufficient resistance of transplanted stem cells to oxidative and inflammatory stresses at the injured sites. In the current study, we demonstrated the pivotal role of antioxidant levels in human umbilical cord mesenchymal stem cells (hUCMSCs) dynamic in vitro anti-stress abilities against lipopolysaccharide (LPS)/H2O2 intoxication and in vivo therapeutic efficacy in a murine acute liver failure model induced by D-galactosamine/LPS (Gal/LPS) by either reducing the antioxidant levels with diethyl maleate (DEM) or increasing antioxidant levels with edaravone. Both the anti- and pro-oxidant treatments dramatically influenced the survival, apoptosis, and reactive oxygen species (ROS) production of hUCMSCs through the MAPK-PKC-Nrf2 pathway in vitro. When compared with untreated and DEM-treated cells, edaravone-treated hUCMSCs rescued NOD/SCID mice from Gal/LPS-induced death, significantly improved hepatic functions and promoted host liver regeneration. These effects were probably from increased stem cell homing, promoted proliferation, decreased apoptosis and enhanced secretion of hepatocyte growth factor (HGF) under hepatic stress environment. In conclusion, elevating levels of antioxidants in hUCMSCs with edaravone can significantly influence their hepatic tissue repair capacity.
This study aimed to investigate the possible therapeutic effects and active components of Lycium barbarum polysaccharides (LBP) on a high fat diet-induced NASH rat model. We induced NASH in a rat model by voluntary oral feeding with a high-fat diet ad libitum for 8 weeks. After 8 weeks, 1 mg/kg LBP was orally administered for another 4 weeks with a high-fat diet. When compared with NASH rats treated for 12 weeks, therapeutic LBP treatment for 4 weeks during 12 weeks of NASH induction showed ameliorative effects on: (1) increased body and wet liver weights; (2) insulin resistance and glucose metabolic dysfunction; (3) elevated level of serum aminotransferases; (4) fat accumulation in the liver and increased serum free fatty acid (FFA) level; (5) hepatic fibrosis; (6) hepatic oxidative stress; (7) hepatic inflammatory response; and (8) hepatic apoptosis. These improvements were partially through the modulation of transcription factor NF-κB, MAPK pathways and the autophagic process. In a palmitate acid-induced rat hepatocyte steatosis cell–based model, we also demonstrated that l-arabinose and β-carotene partially accounted for the beneficial effects of LBP on the hepatocytes. In conclusion, LBP possesses a variety of hepato-protective properties which make it a potent supplementary therapeutic agent against NASH in future clinical trials.
Background/Aims: Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world and the third leading cause of cancer-related death. Critical roles for long non-coding RNAs (lncRNAs) have recently been demonstrated for a variety of cancers, including hepatocellular carcinoma. However, the effect and mechanism of lncRNAs in HCC tumorigenesis and chemoresistance have not been extensively characterized. Methods: In the current study, we have identified a HCC-expressed lncRNA termed as HANR (HCC associated long non-coding RNA). We identified HANR by microarray analysis and validated its up-regulated expression by quantitative PCR. RNA pull-down and pathway analyses were conducted to evaluate physical and functional interactions with HANR. In vivo experiments were performed to assess tumorigenesis and increase of chemoresistance. In addition, the HANR expression in HCC specimens was detected by FISH. Xenograft and orthotopic mice model was constructed to observe the effect of HANR on tumorigenesis and chemoresistance in vivo. Results: HANR was demonstrated to be up-regulated in HCC patients and HCC cell lines. Increased HANR expression in HCC predicted short survival of patients. Knock-down of HANR markedly retarded cell proliferation, suppressed HCC xenograft/orthotopic tumor growth, induced apoptosis and enhanced chemosensitivity to doxorubicin, while overexpression of HANR showed the opposite effects. It was found that HANR bind to GSKIP for regulating the phosphorylation of GSK3β in HCC. Conclusion: Our results demonstrate that HANR contributes to the development of HCC and is a promising therapeutic target for chemosensitization of HCC cells to doxorubicin, which may represent a promising therapeutic target in the future.
Lycium barbarum has been used as a traditional Chinese medicine to nourish liver, kidneys and the eyes. However, the underlying mechanisms of its hepatic-protective properties remain uncertain. In this study, we aimed to investigate whether thioredoxin-interacting protein (TXNIP) and NOD-like receptor 3 (NLRP3) inflammasome mediated the attenuation of ethanol-induced hepatic injury by Lycium barbarum polysaccharide (LBP). Rat normal hepatocyte line BRL-3A was pre-treated with LBP prior to ethanol incubation. Hepatic damages, including apoptosis, inflammation, and oxidative stress, were measured. Then the inhibition of endogenous TXNIP expression was achieved by using its specific siRNA to test its possible involvement in the injury attenuation. We found that 50μg/ml LBP pre-treatment significantly alleviated 24-h ethanol exposure-induced overexpression of TXNIP, increased cellular apoptosis, secretion of inflammatory cytokines, activation of NLRP3 inflammasome, production of ROS, and reduced antioxidant enzyme expression. Silence of TXNIP suppressed the activated NLRP3 inflammasome, increased oxidative stress and worsened apoptosis in the cells. Further addition of LBP did not influence the effects of TXNIP inhibition on the cells. In conclusion, inhibition of hepatic TXNIP by LBP contributes to the reduction of cellular apoptosis, oxidative stress and NLRP3 inflammasome-mediated inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.