BackgroundOur previous studies have identified that miR-125b was overexpressed in type II endometrial carcinoma (EC) cells compared with type I using microRNAs microarray. Although recent studies have shown the important role of miR-125b in several tumors and overexpression of miR-125b in advanced EC, its function in this disease has not yet been defined. In the present study, we tried to confirm the result of microRNAs microarray and further investigated the functions of miR-125b in EC, and tried to find new downstream targets of miR-125b.MethodsDifferential expression of miR-125b was detected between type II EC cells (KLE, AN3CA) with ER negative and type I EC cells (ishikawa, RL95-2) with ER positive by qRT-PCR and northern blotting. The effects of miR-125b of on proliferation, migration, and target protein expression were evaluated by CCK8 assay, wound healing assay, transwell migration assay, western blotting, and Tumorigenicity assays in nude mice. In addition, luciferase reporter plasmid was constructed to demonstrate the direct target of miR-125b.ResultsMiR-125b was overexpressed in type II EC cells compared with type I. Exogenous miR-125b expression increased proliferation and migration of ishikawa cells and abrogating expression of miR-125b suppressed proliferation, and migration of AN3CA cells in vitro. In addition, in vivo tumor formation assay confirmed that forced miR-125b expression promoted proliferation potential of ishikawa cells, and tumor suppressor gene Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) was identified to be the direct target of miR-125b.ConclusionsTP53INP1 was newly identified to be the direct downstream target of miR-125b. MiR-125b, which was overexpressed in type II EC cells compared with type I, contributes to malignancy of type II EC possibly through down-regulating TP53INP1.
In order to improve the sensitivity of cervical cancer cells to irradiation therapy, we targeted hexokinase 2 (HK2), the first rate-limiting enzyme of glycolysis, and explore its role in cervical cancer cells. We suppressed HK2 expression and/or function by shRNA and/or metformin and found HK2 inhibition enhanced cells apoptosis with accelerating expression of cleaved PARP and caspase-3. HK2 inhibition also induced much inferior proliferation of cervical cancer cells both in vitro and in vivo with diminishing expression of mTOR, MIB and MGMT. Moreover, HK2 inhibition altered the metabolic profile of cervical cancer cells to one less dependent on glycolysis with a reinforcement of mitochondrial function and an ablation of lactification ability. Importantly, cervical cancer cells contained HK2 inhibition displayed more sensitivity to irradiation. Further results indicated that HPV16 E7 oncoprotein altered the glucose homeostasis of cervical cancer cells into glycolysis by coordinately promoting HK2 expression and its downregulation of glycolysis. Taken together, our findings supported a mechanism whereby targeting HK2 inhibition contributed to suppress HPV16 E7-induced tumor glycolysis metabolism phenotype, inhibiting tumor growth, and induced apoptosis, blocking the cancer cell energy sources and ultimately enhanced the sensitivity of HPV(+) cervical cancer cells to irradiation therapy.
Prostaglandin E2 (PGE2), a derivative of arachidonic acid, has been identified as a tumorigenic factor in many cancers in recent studies. Prostaglandin E synthase 2 (PTGES2) is an enzyme that in humans is encoded by the PTGES2 gene located on chromosome 9, and it synthesizes PGE2 in human cells. In our study, we selected 119 samples from endometrial cancer patients, with 50 normal endometrium tissue samples as controls, in which we examined the expression of PTGES2. Both immunohistochemistry (IHC) and Western blot analyses demonstrated that synthase PTGES2, which is required for PGE2 synthesis, was highly expressed in endometrium cancer tissues compared with normal endometrium. Stable PTGES2-shRNA transfectants were generated in Ishikawa and Hec-1B endometrial cancer cell lines, and transfection efficiencies were confirmed by RT-PCR and Western blot analyses. We found that PGE2 promoted proliferation and invasion of cells in Ishikawa and Hec-1B cells by cell counting kit-8 tests (CCK8) and transwell assays, respectively. PGE2 stimulation enhanced the expression of SUMO-1, via PGE2 receptor subtype 4 (EP4). Further analysis implicated the Wnt/β-catenin signaling pathway function as the major mediator of EP4 and SUMO-1. The increase in SUMO-1 activity prompted the SUMOlyation of target proteins which may be involved in proliferation and invasion. These findings suggest SUMO-1 and EP4 as two potential targets for new therapeutic or prevention strategies for endometrial cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.