A diffuse and continuous monitoring of the in-service structural response of buildings can allow for the early identification of the formation of cracks and collapse mechanisms before the occurrence of severe consequences. In the case of existing masonry constructions, the implementation of tailored Structural Health Monitoring (SHM) systems appears quite significant, given their well-known susceptibility to brittle failures. Recently, a new sensing technology based on smart bricks, i.e., piezoresistive brick-like sensors, was proposed in the literature for the SHM of masonry constructions. Smart bricks can be integrated within masonry to monitor strain and detect cracks. At present, the effectiveness of smart bricks has been proven in different structural settings. This paper contributes to the research by investigating the strain-sensitivity of smart bricks of standard dimensions when inserted in masonry walls subjected to in-plane shear loading. Real-scale masonry walls instrumented with smart bricks and displacement sensors were tested under diagonal compression, and numerical simulations were conducted to interpret the experimental results. At peak condition, numerical models provided comparable strain values to those of smart bricks, i.e., approximately equal to 10−4, with similar trends. Overall, the effectiveness of smart bricks in strain monitoring and crack detection is demonstrated.
Recent studies have shown how the variability of material properties affects the nonlinear behaviour of unreinforced masonry (URM) walls. To preserve the historical built heritage, variations in structural capacity of URM buildings associated to aging and deterioration of masonry should be quickly predicted, by integrating with structural health monitoring and risk management. In this study, relationships between structural capacity features and material properties are numerically investigated for single walls, based on a structural modelling strategy that was experimentally validated on full-scale URM walls. The paper proposes an evaluation of the effects of degradation of material properties on the macroscopic descriptors of single masonry walls, such as peak strength and stiffness, also considering the uncertainties in the estimate of those properties. The authors do not attempt to model the physical processes of material aging with time, but assume certain levels of material degradation and investigate their effects on the structural response and capacity. Force–displacement curves and failure modes are associated with the overall nonlinear response of masonry walls due to progressive deterioration of material properties. Regression models are then proposed to predict variations in the peak load-bearing capacity and in -plane lateral stiffness when the mechanical properties of the constituents changed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.