Cellular commitment to a specific lineage is controlled by differential silencing of genes, which in turn depends on epigenetic processes such as DNA methylation and histone modification. During early embryogenesis, the mammalian genome is 'wiped clean' of most epigenetic modifications, which are progressively re-established during embryonic development. Thus, the epigenome of each mature cellular lineage carries the record of its developmental history. The subsequent trajectory and pattern of development are also responsive to environmental influences, and such plasticity is likely to have an epigenetic basis. Epigenetic marks may be transmitted across generations, either directly by persisting through meiosis or indirectly through replication in the next generation of the conditions in which the epigenetic change occurred. Developmental plasticity evolved to match an organism to its environment, and a mismatch between the phenotypic outcome of adaptive plasticity and the current environment increases the risk of metabolic and cardiovascular disease. These considerations point to epigenetic processes as a key mechanism that underpins the developmental origins of chronic noncommunicable disease. Here, we review the evidence that environmental influences during mammalian development lead to stable changes in the epigenome that alter the individual's susceptibility to chronic metabolic and cardiovascular disease, and discuss the clinical implications.
Considerable epidemiological, experimental and clinical data have amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. This relationship reflects plastic responses made by the developing organism as an evolved strategy to cope with immediate or predicted circumstances, to maximize fitness in the context of the range of environments potentially faced. There is now increasing evidence, both in animals and humans, that such developmental plasticity is mediated in part by epigenetic mechanisms. However, recognition of the importance of developmental plasticity as an important factor in influencing later life health-particularly within the medical and public health communities-is low, and we argue that this indifference cannot be sustained in light of the growing understanding of developmental processes and the rapid rise in the prevalence of obesity and metabolic disease globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.