Background: Pressure-volume (PV) loops provide a wealth of information on cardiac function but are not readily available in clinical routine or in clinical trials. This study aimed to develop and validate a noninvasive method to compute individualized left ventricular PV loops. Methods: The proposed method is based on time-varying elastance, with experimentally optimized model parameters from a training set (n=5 pigs), yielding individualized PV loops. Model inputs are left ventricular volume curves from cardiovascular magnetic resonance imaging and brachial pressure. The method was experimentally validated in a separate set (n=9 pig experiments) using invasive pressure measurements and cardiovascular magnetic resonance images and subsequently applied to human healthy controls (n=13) and patients with heart failure (n=28). Results: There was a moderate-to-excellent agreement between in vivo-measured and model-calculated stroke work (intraclass correlation coefficient, 0.93; bias, −0.02±0.03 J), mechanical potential energy (intraclass correlation coefficient, 0.57; bias, −0.04±0.03 J), and ventricular efficiency (intraclass correlation coefficient, 0.84; bias, 3.5±2.1%). The model yielded lower ventricular efficiency ( P <0.0001) and contractility ( P <0.0001) in patients with heart failure compared with controls, as well as a higher potential energy ( P <0.0001) and energy per ejected volume ( P <0.0001). Furthermore, the model produced realistic values of stroke work and physiologically representative PV loops. Conclusions: We have developed the first experimentally validated, noninvasive method to compute left ventricular PV loops and associated quantitative measures. The proposed method shows significant agreement with in vivo-derived measurements and could support clinical decision-making and provide surrogate end points in clinical heart failure trials.
BackgroundAtrioventricular plane displacement (AVPD) is an indicator for systolic and diastolic function and accounts for 60% of the left ventricular, and 80% of the right ventricular stroke volume. AVPD is commonly measured clinically in echocardiography as mitral and tricuspid annular plane systolic excursion (MAPSE and TAPSE), but has not been applied widely in cardiovascular magnetic resonance (CMR). To date, there is no robust automatic algorithm available that allows the AVPD to be measured clinically in CMR with input in a single timeframe. This study aimed to develop, validate and provide a method that automatically tracks the left and right ventricular AVPD in CMR images, which can be used in the clinical setting or in applied cardiovascular research in multi-center studies.MethodsThe proposed algorithm is based on template tracking by normalized cross-correlation combined with a priori information by principal component analysis. The AVPD in each timeframe is calculated for the left and right ventricle separately using CMR long-axis cine images of the 2, 3, and 4-chamber views.The algorithm was developed using a training set (n = 40), and validated in a test set (n = 113) of healthy subjects, athletes, and patients after ST-elevation myocardial infarction from 10 centers. Validation was done using manual measurements in end diastole and end systole as reference standard. Additionally, AVPD, peak emptying velocity, peak filling velocity, and atrial contraction was validated in 20 subjects, where time-resolved manual measurements were used as reference standard. Inter-observer variability was analyzed in 20 subjects.ResultsIn end systole, the difference between the algorithm and the reference standard in the left ventricle was (mean ± SD) -0.6 ± 1.9 mm (R = 0.79), and −0.8 ± 2.1 mm (R = 0.88) in the right ventricle. Inter-observer variability in end systole was −0.6 ± 0.7 mm (R = 0.95), and −0.5 ± 1.4 mm (R = 0.95) for the left and right ventricle, respectively. Validation of peak emptying velocity, peak filling velocity, and atrial contraction yielded lower accuracy than the displacement measures.ConclusionsThe proposed algorithm show good agreement and low bias with the reference standard, and with an agreement in parity with inter-observer variability. Thus, it can be used as an automatic method of tracking and measuring AVPD in CMR.Electronic supplementary materialThe online version of this article (doi:10.1186/s12880-017-0189-5) contains supplementary material, which is available to authorized users.
Background Quantitative assessment of dynamic lung water accumulation is of interest to unmask latent heart failure. We develop and validate a free-breathing 3D ultrashort echo time (UTE) sequence with automated inline image processing to image changes in lung water density (LWD) using high-performance 0.55 T cardiovascular magnetic resonance (CMR). Methods Quantitative lung water CMR was performed on 15 healthy subjects using free-breathing 3D stack-of-spirals proton density weighted UTE at 0.55 T. Inline image reconstruction and automated image processing was performed using the Gadgetron framework. A gravity-induced redistribution of LWD was provoked by sequentially acquiring images in the supine, prone, and again supine position. Quantitative validation was performed in a phantom array of vials containing mixtures of water and deuterium oxide. Results The phantom experiment validated the capability of the sequence in quantifying water density (bias ± SD 4.3 ± 4.8%, intraclass correlation coefficient, ICC = 0.97). The average global LWD was comparable between imaging positions (supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 25.3 ± 3.6%), with small differences between imaging phases (first supine vs prone 2.0%, p < 0.001; first supine vs second supine − 0.6%, p = 0.001; prone vs second supine − 2.7%, p < 0.001). In vivo test–retest repeatability in LWD was excellent (− 0.17 ± 0.91%, ICC = 0.97). A regional LWD redistribution was observed in all subjects when repositioning, with a predominant posterior LWD accumulation when supine, and anterior accumulation when prone (difference in anterior–posterior LWD: supine − 11.6 ± 2.7%, prone 5.5 ± 2.7%, second supine − 11.4 ± 2.9%). Global LWD maps were calculated inline within 23.2 ± 0.3 s following the image reconstruction using the automated pipeline. Conclusions Redistribution of LWD due to gravitational forces can be depicted and quantified using a validated free-breathing 3D proton density weighted UTE sequence and inline automated image processing pipeline on a high-performance 0.55 T CMR system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.