Core body temperature changes across the ovulatory menstrual cycle, such that it is 0.3°C to 0.7°C higher in the post-ovulatory luteal phase when progesterone is high compared with the pre-ovulatory follicular phase. This temperature difference, which is most evident during sleep or immediately upon waking before any activity, is used by women as a retrospective indicator of an ovulatory cycle. Here, we review both historical and current literature aimed at characterizing changes in core body temperature across the menstrual cycle, considering the assessment of the circadian rhythm of core body temperature and thermoregulatory responses to challenges, including heat and cold exposure, exercise, and fever. We discuss potential mechanisms for the thermogenic effect of progesterone and the temperature-lowering effect of estrogen, and discuss effects on body temperature of exogenous formulations of these hormones as contained in oral contraceptives. We review new wearable temperature sensors aimed at tracking daily temperature changes of women across multiple menstrual cycles and highlight the need for future research on the validity and reliability of these devices. Despite the change in core body temperature across the menstrual cycle being so well identified, there remain gaps in our current understanding, particularly about the underlying mechanisms and microcircuitry involved in the temperature changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.