Androgen receptor (AR) signaling pathway remains the foremost target of novel therapeutics for castration-resistant prostate cancer (CRPC). However, the expression of constitutively active AR variants lacking the carboxy-terminal region in CRPC may lead to therapy inefficacy. These AR variants are supposed to support PCa cell growth in an androgen-depleted environment, but their mode of action still remains unresolved. Moreover, recent studies indicate that constitutively active AR variants are expressed in primary prostate tumors and may contribute to tumor progression. The aim of this study was to investigate the impact of constitutively active AR variants on the expression of tumor progression markers. N-cadherin expression was analyzed in LNCaP cells overexpressing the wild type AR or a constitutively active AR variant by qRT-PCR, Western blot and immunofluorescence. We showed here for the first time that N-cadherin expression was increased in the presence of constitutively active AR variants. These results were confirmed in C4-2B cells overexpressing these AR variants. Although N-cadherin expression is often associated with a downregulation of E-cadherin, this phenomenon was not observed in our model. Nevertheless, in addition to the increased expression of N-cadherin, an upregulation of other mesenchymal markers expression such as VIMENTIN, SNAIL and ZEB1 was observed in the presence of constitutively active variants. In conclusion, our findings highlight novel consequences of constitutively active AR variants on the regulation of mesenchymal markers in prostate cancer.
Colorectal cancer is among the leading causes of cancer-associated deaths worldwide. Treatment failure and tumor recurrence due to survival of therapy-resistant cancer stem/initiating cells represent major clinical issues to overcome. In this study, we identified lysine methyltransferase 9 (KMT9), an obligate heterodimer composed of KMT9α and KMT9β that monomethylates histone H4 at lysine 12 (H4K12me1), as an important regulator in colorectal tumorigenesis. KMT9α and KMT9β were overexpressed in colorectal cancer and colocalized with H4K12me1 at promoters of target genes involved in the regulation of proliferation. Ablation of KMT9α drastically reduced colorectal tumorigenesis in mice and prevented the growth of murine as well as human patient-derived tumor organoids. Moreover, loss of KMT9α impaired the maintenance and function of colorectal cancer stem/initiating cells and induced apoptosis specifically in this cellular compartment. Together, these data suggest that KMT9 is an important regulator of colorectal carcinogenesis, identifying KMT9 as a promising therapeutic target for the treatment of colorectal cancer. Significance: The H4K12 methyltransferase KMT9 regulates tumor cell proliferation and stemness in colorectal cancer, indicating that targeting KMT9 could be a useful approach for preventing and treating this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.