We prove a short time existence result for a system consisting of a geometric evolution equation for a hypersurface and a parabolic equation on this evolving hypersurface. More precisely, we discuss a mean curvature flow scaled with a term that depends on a quantity defined on the surface coupled to a diffusion equation for that quantity. The proof is based on a splitting ansatz, solving both equations separately using linearization and a contraction argument. Our result is formulated for the case of immersed hypersurfaces and yields a uniform lower bound on the existence time that allows for small changes in the initial value of the height function.
We consider a system consisting of a geometric evolution equation for a hypersurface and a parabolic equation on this evolving hypersurface. More precisely, we discuss mean curvature flow scaled with a term that depends on a quantity defined on the surface coupled to a diffusion equation for that quantity. Several properties of solutions are analyzed. Emphasis is placed on to what extent the surface in our setting qualitatively evolves similar as for the usual mean curvature flow. To this end, we show that the surface area is strictly decreasing but give an example of a surface that exists for infinite times nevertheless. Moreover, mean convexity is conserved whereas convexity is not. Finally, we construct an embedded hypersurface that develops a self-intersection in the course of time. Additionally, a formal explanation of how our equations can be interpreted as a gradient flow is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.