P-type ion pumps are membrane transporters that have been classified into five subfamilies termed P1-P5. The ion transported by the P5-ATPases is not known. Five genes named ATP13A1-ATP13A5 that belong to the P5-ATPase group are present in humans. Loss-of-function mutations in the ATP13A2 gene (PARK9, OMIM 610513) underlay a form of Parkinson's disease (PD) known as the Kufor-Rakeb syndrome (KRS), which belongs to the group of syndromes of neurodegeneration with brain iron accumulation (NBIA). Here we report that the cytotoxicity induced by iron exposure was two-fold reduced in CHO cells stably expressing the ATP13A2 recombinant protein (ATP13A2). Moreover, the iron content in ATP13A2 cells was lower than control cells stably expressing an inactive mutant of ATP13A2. ATP13A2 expression caused an enlargement of lysosomes and late endosomes. ATP13A2 cells exhibited a reduced iron-induced lysosome membrane permeabilization (LMP). These results suggest that ATP13A2 overexpression improves the lysosome membrane integrity and protects against the iron-induced cell damage.
P-type ion pumps are membrane transporters that have been classified into five subfamilies termed P1-P5. The ion transported by the P5-ATPases is not known. Five genes, ATP13A (ATPase type 13A) 1-ATP13A5, that belong to the P5-ATPase group have been identified in humans. Mutations of the human gene ATP13A2 underlie a form of PD (Parkinson's disease). Previous studies have suggested a relation between polyamines and P5B-ATPases. We have recently shown that the cytotoxicity induced by the polyamine analogue paraquat (1,1'-dimethyl-4,4'-bipyridinium), which is an environmental agent related to PD development, was increased in ATP13A2-expressing CHO (Chinese-hamster ovary) cells. In the present study we showed that ATP13A2-expressing CHO cells exhibit a 2-fold higher accumulation of spermidine. Increasing concentrations of spermidine reduced the viability of CHO cells stably expressing ATP13A2. The higher levels of spermidine attained by the ATP13A2-expressing CHO cells were correlated with an increase in the ATP-dependent spermidine uptake in an isolated subcellular fraction containing lysosomes and late endosomes. The results of the present study support the idea that the human P5B-ATPase ATP13A2 is involved in polyamine uptake.
Background: Spf1 belongs to the least characterized group of P5-ATPases. Results: GFP-Spf1 hydrolyzes ATP and forms a phosphoenzyme that rapidly decays in the presence of ADP. Conclusion: The Spf1 performs well the E 1 steps of the reaction cycle, but progression to the E 2 forms is slow. Significance: The study extends the understanding of the catalytic mechanism of P5-ATPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.