Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.
This report introduces various approaches to target defined neural pathways for stimulation and to address the effect of particular neural circuits on behavior in a model animal, the fruit fly ( ). The objective of this Drosophila melanogaster novel educational module described can be used to explain and address principle concepts in neurobiology for high school and college level students. A goal of neurobiology is to show how neural circuit activity controls corresponding behavior in animals. The fruit fly model system provides powerful genetic tools, such as the UAS-Gal4 system, to manipulate expression of non-native proteins in various populations of defined neurons: glutamergic, serotonergic, GABAergic, and cholinergic. The exhibited behaviors in the examples we provide allows teachers and students to address questions from behaviors to details at a cellular level. We provided example sets of data, obtained in a research lab, as well as ideas on ways to present data for participants and instructors. The optogenetic tool, channelrhodpsin 2 (ChR2), is employed to increase the activity of each population of neurons in a spatiotemporal controlled manner in behaving larvae and adult flies. Various behavioral assays are used to observe the effect of a specific neuron population activation on crawling behavior in larvae and climbing behavior in adult flies. Participants using this module become acquainted with the actions of different neurotransmitters in the nervous system. A pre-and postassessment survey on the content is provided for teachers, as templates, to address learning of content and concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.