BackgroundUntreated chronic otitis media severely impairs quality of life in affected individuals. Local destruction of the middle ear and subsequent loss of hearing are common sequelae, and currently available treatments provide limited relief. Therefore, the objectives of this study were to evaluate the feasibility of the insertion of a coronary stent from the nasopharynx into the Eustachian tube in-vivo in sheep and to make an initial assessment of its positional stability, tolerance by the animal, and possible tissue reactions.MethodsBilateral implantation of bare metal cobalt-chrome coronary stents of two sizes was performed endoscopically in three healthy blackface sheep using a nasopharyngeal approach. The postoperative observation period was three months.ResultsStent implantation into the Eustachian tube was feasible with no intra- or post-operative complications. Health status of the sheep was unaffected. All stents preserved their cylindrical shape. All shorter stents remained in position and ventilated the middle ear even when partially filled with secretion or tissue. One of the long stents became dislocated toward the nasopharynx. Both of the others remained fixed at the isthmus but appeared to be blocked by tissue or secretion. Tissue overgrowth on top of the struts of all stents resulted in closure of the tissue-lumen interface.ConclusionStenting of the Eustachian tube was successfully transferred from cadaver studies to an in-vivo application without complications. The stent was well tolerated, the middle ears were ventilated, and clearance of the auditory tube appeared possible. For fixation, it seems to be sufficient to place it only in the cartilaginous part of the Eustachian tube.Electronic supplementary materialThe online version of this article (10.1186/s13005-018-0165-5) contains supplementary material, which is available to authorized users.
Eustachian tube disorders can lead to chronic otitis media with consecutive conductive hearing loss. To improve treatment and to develop new types of implants such as stents, an adequate experimental animal model is required. As the middle ear of sheep is known to be comparable to the human middle ear, the dimensions of the Eustachian tube in two strains of sheep were investigated. The Eustachian tube and middle ear of half heads of heathland and blackface sheep were filled with silicone rubber, blended with barium sulfate to induce X-ray visibility. Images were taken by digital volume tomography. The tubes were segmented, and a three-dimensional model of every Eustachian tube was generated. The lengths, diameters and shapes were determined. Additionally, the feasibility of endoscopic stent implantation and fixation was tested in cadaver experiments. The length of the tube between ostium pharyngeum and the isthmus and the diameters were comparable to published values for the human tube. The tube was easily accessible through the nose, and then stents could be implanted and fixed at the isthmus. The sheep appears to be a promising model for testing new stent treatments for middle ear ventilation disorders.
ISO 10993-5 provides one of the accepted standards for testing the biotoxicity of new materials. All of the recommended test procedures rely upon the uptake or metabolism of dye by living cells. Results of direct contact tests can be potentially compromised by interaction or adsorption of the dye or its metabolic products. Therefore, the aim of the current study was to validate the use of the eGFP signal of transfected NIH-3T3 fibroblasts with the results of the MTT test in order to provide a test procedure that is very close to the ISO 10993-5 but has the advantage of not relying on the addition of dye. Our tests show that the MTT assay detects cytotoxicity in the eGFP NIH-3T3 cells at least as well as in the L929 cells. To facilitate the validation, we chose to integrate the fluorescence measurements into the MTT test procedure. To that end, an additional washing step was introduced. Additionally, medium without phenol red was used, resulting in a very high correlation of both measurements. Without these modifications, the fluorescence test was comparable to the MTT test in its ability to detect the cytotoxic potential of substances; however, it did result in slightly elevated IC50 concentrations. As the results of both tests correlated highly, measurement of the eGFP signal appears to present a reliable tool for detecting cytotoxicity of materials in line with the ISO 10993-5 norm with the advantage of avoiding the addition of dyes and the subsequent potential interaction with test materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 715-722, 2017.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.