Biological invasions can bring both the invader and native taxa into contact with novel parasites. As cane toads ( Rhinella marina ) have spread through Australia, they have encountered lungworms (Rhabdias hylae) that occur in native frogs. Field surveys suggest that these lungworms have not host-switched to toads. In our laboratory studies, R. hylae infected cane toads as readily as it infected native frogs, but failed to reach the lungs of the novel host (i.e., were killed by the toads' immune response). Plausibly, then, R. hylae might reduce the viability both of their native hosts (frogs, that can exhibit high parasite burdens) and cane toads (that must deal with infective larvae traveling through the host body). Our laboratory trials suggest, however, that the impacts of the parasite on infected anuran hosts (both frogs and toads) were minimal, with no significant decrements to host survival, activity, growth, or locomotor performance. Ironically, the lack of impact of the parasite on its native hosts appears to be an outcome of co-evolution (frogs tolerate the lungworm), whereas the lack of impact on the novel host is due to a lack of co-evolution (toads can recognize and eliminate the lungworm).
HighlightsRhabdias hylae (frog) lungworms entered cane toads and migrated through the body but were not found in the target tissue, the lungs.Larvae of both lungworm species induced inflammation in both types of hosts.The immune response (relative numbers of different cell types) differed between hosts and between parasite species.
Many invading species have brought devastating parasites and diseases to their new homes, thereby imperiling native taxa. Potentially, though, invaders might have the opposite effect. If they take up parasites that otherwise would infect native taxa, but those parasites fail to develop in the invader, the introduced species might reduce parasite burdens of the native fauna. Similarly, earlier exposure to the other taxon's parasites might ‘prime’ an anuran's immune system such that it is then able to reject subsequent infection by its own parasite species. Field surveys suggest that lungworm counts in native Australian frogs decrease after the arrival of invasive cane toads (Rhinella marina), and laboratory studies confirm that native lungworm larvae enter, but do not survive in, the toads. In laboratory trials, we confirmed that the presence of anurans (either frogs or toads) in an experimental arena reduced uptake rates of lungworm larvae by anurans that were later added to the same arena. However, experimental exposure to lungworms from native frogs did not enhance a toad's ability to reject subsequent infection by its own lungworm species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.