The Welsh Transplantation and Immunogenetics Laboratory (WTAIL) is responsible for managing patient work-up for haematopoietic stem cell transplantation (HSCT), the only potentially curative option for many haematological and non-haematological conditions. Work-up requires regular communication between WTAIL and the transplanting clinicians, facilitated by weekly multidisciplinary team (MDT) meetings, to agree decisions and proceed through each work-up stage. Effective communication and minimising error are critical, as transplanting cells from a suboptimal donor could have severe or fatal consequences for the patient. We reviewed our HSCT patient management and identified issues including staff dissatisfaction with the inefficiency of the current (paper-based) system and concern about the potential for incidents caused by errors in manual transcription of patient information and tracking clinical decisions. Another driver for change was the COVID-19 pandemic, which prevented the usual face-to-face MDT meetings in which staff would show clinicians the paper records and reports; the shift to online MDT required new ways of sharing data. In this project we developed a new central reference point for our patient management data along with electronic patient summary sheets, designed with an eye to improving safety and efficiency. Over several improvement cycles we tested and refined the summary sheets with staff and clinicians and experimented with videoconferencing to facilitate data sharing. We conducted interviews with staff from which we concluded that the new process successfully reduced transcription and duplication and improved communication with the clinicians during the pandemic. Despite an increase in workload due to build-up of active patient work-up cases during the pandemic, staff reported that the new summaries enabled them to cope well. A key initiative was creation of a ‘Task and Finish’ group that helped establish continual improvement culture and identified additional areas for improvement which have been followed up in further improvement projects.
Up to 40% of poor risk Acute Myeloid Leukaemia (AML) patients receiving an allogeneic bone marrow transplant (BMT) from a donor will suffer disease recurrence/relapse within a year, significantly shortening their overall survival. Drug development to date has focused on clearing the bulk of leukaemic cells and how to target residual 'Leukaemic stem cells,' which may give rise to relapse, however little work has been undertaken to discover the mechanisms by which the bone marrow niche may be unable to support normal haematopoietic stem cell growth and this may have a significant impact on the re-emergence of the patient's leukaemia. With the rise in the use of reduced intensity conditioning (RIC) regimes prior to transplant, the role of the patient microenvironment into which donor HSCs are engrafted warrants closer investigation. Stromal layers (AML-MSC) were derived from a cohort of 45 serial diagnostic, early (1-3 month), mid (6-9 month) and late (12 month+) post-transplant AML patients. Uniformity of stromal immunophenotyping markers (CD29, CD73, CD90, CD105, CD166, CD44, CD146) was present from passage 2 with concomitant loss of CD45 and other myeloid lineage markers (CD14, CD13, CD33, CD34). Diagnostic AML-MSCs showed a significant increase in stromal multipotency (CFU-F colony assays and CD146 expression, p<0.001) compared to both NBM and post-transplant MSCs. In comparison, early post-transplant colony formation was significantly reduced compared to other timepoints. AML-MSC supportive capacity for matched allogeneic donor (normal HSC) or autologous (malignant) blast populations was investigated using 14 day co-culture assays. Flow cytometric analysis of suspension and adherent co-culture fractions revealed AML blast cell numbers were consistently higher than comparative donor cell cultures at all post-transplant stages (p<0.001), suggesting patient AML-MSCs retain a preference for supporting their own blasts throughout different treatment stages. This observation was also confirmed in long-term LTC-IC assays in the stroma-adherent cobblestone fraction. Throughout serial samples, supportive capacity increased in later transplant AML-MSCs samples, confirming previous multipotency observations that stromal fitness to support stem cell growth may be compromised early post-transplant. Cytokine induced differentiation of AML-MSCs to osteoblast and adipocyte lineages resulted in a significant enhancement of adhesion and supportive capacity in the adipocyte lineage for AML blasts at all timepoints (p<0.002), which was absent in donor cell cultures. Osteoblast cultures gave results similar to that of the undifferentiated stromal layers for both AML and donor blast support. Parallel experiments using donor NBM-MSC layers revealed reduced support for AML blasts compared to that of matched AML-MSC stroma, however the same predisposition for adipogenic support of AML blasts was also observed. Luminex secretome profiling of serial AML-MSC supernatants using a panel of 105 pro-survival, inflammatory, migratory and immunomodulation cytokines revealed significant alterations in a number of targets associated with the diagnostic and post-transplant setting. Of the 80/105 targets detectable (>100pg/ml), high expression levels were seen in adhesion and ECM remodelling targets highlighting the ability of stromal secretory molecules to modify the surrounding environment. Hierarchical clustering analysis revealed post-transplant AML profiles correlated more closely with that of NBM-MSC at later time points, however significant increases in inflammatory/metabolic stress signalling molecules including IGFBP-3, Protein S, DKK1, VEGF, MMP1,MMP3, TPO (p,0.001), which have all been implicated HSC quiescence were associated with diagnostic and early post-transplant secretory profiles. In conclusion we identified several changes in the molecular and functional behaviour of the patient bone marrow microenvironment that may promote pro-leukaemic cell survival in post-transplant AML. Alterations in stromal fitness, adipogenic preference and metabolic stress signalling may contribute to a failing ability to support normal donor blood cells. Further exploration of therapies that target these alterations and prime the niche in favour of donor cells may provide a critical window for early clinical intervention and improved patient outcome. Disclosures Ottmann: Novartis: Consultancy; Celgene: Consultancy, Research Funding; Pfizer: Consultancy; Amgen: Consultancy; Takeda: Consultancy; Fusion Pharma: Consultancy, Research Funding; Incyte: Consultancy, Research Funding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.