The 37-kDa protein annexin 1 (Anx-1; lipocortin 1) has been implicated in the regulation of phagocytosis, cell signaling, and proliferation and is postulated to be a mediator of glucocorticoid action in inflammation and in the control of anterior pituitary hormone release. Here, we report that mice lacking the Anx-1 gene exhibit a complex phenotype that includes an altered expression of other annexins as well as of COX-2 and cPLA2. In carrageenin- or zymosan-induced inflammation, Anx-1-/- mice exhibit an exaggerated response to the stimuli characterized by an increase in leukocyte emigration and IL-1beta generation and a partial or complete resistance to the antiinflammatory effects of glucocorticoids. Anx-1-/- polymorphonuclear leucocytes exhibited increased spontaneous migratory behavior in vivo whereas in vitro, leukocytes from Anx-1-/- mice had reduced cell surface CD 11b (MAC-1) but enhanced CD62L (L-selectin) expression and Anx-1-/- macrophages exhibited anomalies in phagocytosis. There are also gender differences in activated leukocyte behavior in the Anx-1-/- mice that are not seen in the wild-type animals, suggesting an interaction between sex hormones and inflammation in Anx-1-/- animals.
After injury or infection, neutrophils rapidly migrate from the circulation into tissues by means of an orderly progression of adhesion receptor engagements. Neutrophils have been previously considered to use selectins exclusively to roll on vessels before an adhesion step mediated by the β2 integrins, lymphocyte function–associated antigen (LFA)-1, and Mac-1. Here we use LFA-1−/− mice, function blocking monoclonal antibodies, and intravital microscopy to investigate the roles of LFA-1, Mac-1, and α4 integrins in neutrophil recruitment in vivo. For the first time, we show that LFA-1 makes a contribution to neutrophil rolling by stabilizing the transient attachment or tethering phase of rolling. In contrast, Mac-1 does not appear to be important for either rolling or firm adhesion, but instead contributes to emigration from the vessel. Blocking Mac-1 in the presence of LFA-1 significantly reduces emigration, suggesting cooperation between these two integrins. Low levels of α4β1 integrin can be detected on neutrophils from LFA-1+/+ and −/− mice. These cells make use of α4β1 during the rolling phase, particularly in the absence of LFA-1. Thus LFA-1 and α4β1, together with the selectins, are involved in the rolling phase of neutrophil recruitment, and, in turn, affect the later stages of the transmigration event.
Inflammation is the body’s way of defending itself against noxious stimuli and pathogens. Under normal circumstances, the body is able to eliminate the insult and subsequently promote the resolution of inflammation and the repair of damaged tissues. The concept of homeostasis is one that not only requires a fine balance between both pro-inflammatory mediators and pro-resolving/anti-inflammatory mediators, but also that this balance occurs in a time and space-specific manner. This review examines annexin A1, an anti-inflammatory protein that, when used as an exogenous therapeutic, has been shown to be very effective in limiting inflammation in a diverse range of experimental models, including myocardial ischemia/reperfusion injury, arthritis, stroke, multiple sclerosis, and sepsis. Notably, this glucocorticoid-inducible protein, along with another anti-inflammatory mediator, lipoxin A4, is starting to help explain and shape our understanding of the resolution phase of inflammation. In so doing, these molecules are carving the way for innovative drug discovery, based on the stimulation of endogenous pro-resolving pathways.
Background Platelet activation at sites of vascular injury is essential for hemostasis, but it is also a major pathomechanism underlying ischemic injury. As anti-inflammatory therapies limit thrombosis and anti-thrombotic therapies reduce vascular inflammation, we tested the therapeutic potential of two pro-resolving endogenous mediators: Annexin A1 N-terminal derived peptide (AnxA1Ac2–26) and aspirin (ASA) triggered lipoxin A4 (ATL, 15-epi-lipoxin A4), on the cerebral microcirculation following ischemia-reperfusion (I/R) injury. Furthermore, we tested whether the lipoxin A4 receptor, formyl-peptide receptor 2/3 (Fpr2/3, ortholog to human FPR2/ALX), evoked neuro-protective functions following cerebral I/R injury. Methods and Results Using intravital microscopy, we found that cerebral I/R injury was accompanied by neutrophil and platelet activation and neutrophil-platelet aggregate (NPA) formation within cerebral microvessels. Moreover, ATL activation of neutrophil Fpr2/3 regulated NPA formation in the brain, and inhibited the reactivity of the cerebral microvasculature. The same results were obtained with AnxA1Ac2–26 administration. Blocking Fpr2/ALX with the antagonist Boc2 reversed this effect, and treatments were ineffective in Fpr2/3 knockout mice, who displayed an exacerbated disease severity, evidenced by increased infarct area, blood brain barrier dysfunction, increased neurological score and elevated levels of cytokines. Furthermore, ASA treatment significantly reduced cerebral leukocyte recruitment, and increased endogenous levels of ATL, effects again mediated by Fpr2/3. Conclusions In summary, Fpr2/ALX is a therapeutic target for initiating endogenous pro-resolving, anti-inflammatory pathways following cerebral I/R injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.