Dressing is an important operation for the grinding process. Its goal is to recondition the wheel tool to re-establish its cutting characteristics, owing to the wear produced after successive passes. Monitoring systems that use acoustic emission (AE) have been studied to correlate the signals with several tool conditions. This study brings a new approach of processing AE signals with the purpose of identifying the correct moment to stop the dressing, which is essential in an automatic control system. From the AE signals collected in dressing tests with aluminium oxide grinding wheel and single-point dresser, spectral analysis was made through power spectral density, selecting frequencies bands that best characterise the process. The statistical parameter 'counts' was applied to the raw signal unfiltered and filtered in the selected bands in order to identify the tool condition and, in turn, towards a monitoring system implementation. Results showed an expressive relation between tool cutting conditions and processed signals in the selected bands. There was a great disparity of the filtered signals in the selected bands and signals unfiltered, reflecting that the filtered ones were more efficient in terms of process automation.
The grinding process is situated at the end of the machining chain, where geometric and dimensional characteristics and highquality surface are required. The constant use of cutting tool (grinding wheel) causes loss of its sharpness and clogging of the pores among the abrasive grains. In this context, the dressing operation is necessary to correct these and other problems related to its use in the process. Dressing is a reconditioning operation of the grinding wheel surface aiming at restoring the original condition and its efficiency. The objective of this study is to evaluate the surface regularity and dressing condition of the grinding wheel in the surface grinding process by means of digital signal processing of acoustic emission and fuzzy models. Tests were conducted by using synthetic diamond dressers in a surface grinding machine equipped with an aluminum oxide grinding wheel. The acoustic emission sensor was attached to the dresser holder. A frequency domain analysis was performed to choose the bands that best characterized the process. A frequency band of 25-40 kHz was used to calculate the ratio of power (ROP) statistic, and the mean and standard deviation values of the ROP were inputted to the fuzzy system. The results indicate that the fuzzy model was highly effective in diagnosing the surface conditions of the grinding wheel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.