An essential oil from Senecio atacamensis Phil. (Asteraceae) was obtained by hydrodistillation of its aerial parts (leaves and stems) and its composition was determined by GC and GC/MS analysis. The identification by GC of the essential oil components, in both leaves and stems respectively, showed α-terpinene (36.05% and 20.57%); α-phellandrene (27.79% and 25.37%), and p-cymene (11.85% and 22.55%) as the most abundant monoterpenes. Furthermore, the oil was tested for its antimicrobial activity using paper disc diffusion and the dilution broth method, exhibiting moderate inhibition of human pathogenic bacteria.
Four benzodiazepines flunitrazepam, nitrazepam, clonazepam, and alprazolam, have been analyzed from biological matrices by dual column gas chromatography using a nitrogen-phosphorus detector (NPD) and a micro-electron capture detector (m-ECD). The recoveries of the four benzodiazepines spiked into human whole blood and plasma were 88.8 -97.9 and 90.7 -97.5%, respectively. The regression equations for the four benzodiazepines showed excellent linearity. The detection limits (LODs) were 0.14 -0.95 ng/mL for whole blood and 0.13 -0.93 ng/mL for plasma. The method is simple and sensitive for the determination of benzodiazepines in human whole blood and plasma, and may be useful in forensic science practice.
A rapid, selective, sensitive, and specific method is presented to simultaneously quantify morphine, 6-monoacetylmorphine (6-MAM), codeine, heroin, fentanyl, and methadone in human whole blood and plasma. The drugs were extracted with phosphate buffer at pH 6, followed by solid-phase extraction (SPE) and quantification by GC/MS with electron impact ionization using helium as carrier gas. Quantification was performed based on nalorphine as internal standard (IS). The specificity, linearity, intra-and inter-assay precision and accuracy, and extraction recovery were fully evaluated. The limits of detection (LODs) were 0.40 -7.63 ng/mL for whole blood and 0.80 -32.00 ng/mL for plasma. The method is fast, simple, and accurate, with the sensitivity and specificity required in forensic and clinical toxicology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.