Recent studies have shown that phishers are using phishing kits to deploy phishing attacks faster, easier and more massive. Detecting phishing kits in deployed websites might help to detect phishing campaigns earlier. To the best of our knowledge, there are no datasets providing a set of phishing kits that are used in websites that were attacked by phishing. In this work, we propose PhiKitA, a novel dataset that contains phishing kits and also phishing websites generated using these kits. We have applied MD5 hashes, fingerprints, and graph representation DOM algorithms to obtain baseline results in PhiKitA in three experiments: familiarity analysis of phishing kit samples, phishing website detection and identifying the source of a phishing website. In the familiarity analysis, we find evidence of different types of phishing kits and a small phishing campaign. In the binary classification problem for phishing detection, the graph representation algorithm achieved an accuracy of 92.50%, showing that the phishing kit data contain useful information to classify phishing. Finally, the MD5 hash representation obtained a 39.54% F1 score, which means that this algorithm does not extract enough information to distinguish phishing websites and their phishing kit sources properly.
Colección JORNADAS Y CONGRESOS n.º 34 Esta editorial es miembro de la UNE, lo que garantiza la difusión y comercialización de sus publicaciones a nivel nacional e internacional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.