Phenol is a recalcitrant anthropogenic compound whose presence has been reported in both wastewater and drinking water; human exposure to phenolic substances can lead to health problems. The degradation of phenol (measured as COD decrease) through solar heterogeneous photocatalysis with immobilized TiO2 was performed in two different reactors: a flat-plate reactor (FPR) and a compound parabolic collector (CPC). A 23 full factorial experimental design was followed. The variables were the presence of TiO2, H2O2 addition, and the type of reactor. Data were fitted to the pseudo-first-order reaction-rate-kinetics model. The rate constant for photocatalytic phenol degradation with 1 mM of H2O2 was 6.6 × 10−3 min−1 for the FPR and 5.9 × 10−3 min−1 in the CPC. The calculated figures of merit were analyzed with a MANCOVA, with UV fluence as a covariate. An ANCOVA showed that the type of reactor, H2O2 addition, or fluence had no statistically significant effect on the results, but there was for the presence of TiO2. According to the MANCOVA, fluence and TiO2 presence were significant (p < 0.05). The CPC was on average 17.4% more efficient than the FPR when it came to collector area per order (ACO) by heterogeneous photocatalysis and 1 mM H2O2 addition.
Arsenic (As) poses a threat to human health. In 2014, more than 200 million people faced arsenic exposure through drinking water, as estimated by the World Health Organization. Additionally, it is estimated that drinking water with proper microbiological quality is unavailable for more than 1 billion people. The present work analyzed a solar heterogeneous photocatalytic (HP) process for arsenite (AsIII) oxidation and coliform disinfection from a real groundwater matrix employing two reactors, a flat plate reactor (FPR) and a compound parabolic collector (CPC), with and without added hydrogen peroxide (H2O2). The pseudo first-order reaction model fitted well to the As oxidation data. The treatments FPR–HP + H2O2 and CPC–HP + H2O2 yielded the best oxidation rates, which were over 90%. These treatments also exhibited the highest reaction rate constants, 6.7 × 10−3 min−1 and 6.8 × 10−3 min−1, respectively. The arsenic removal rates via chemical precipitation reached 98.6% and 98.7% for these treatments. Additionally, no coliforms were detected at the end of the process. The collector area per order (ACO) for HP treatments was on average 75% more efficient than photooxidation (PO) treatments. The effects of the process independent variables, H2O2 addition, and light irradiation were statistically significant for the AsIII oxidation reaction rate (p < 0.05).
Access to drinking water is a human right recognized by the United Nations. It is estimated that more than 2.1 billion people lack access to drinking water with an adequate microbiological quality, which is associated to 80% of all diseases, as well as with millions of deaths caused by infections, especially in children. Water disinfection technologies need a continuous improvement approach to meet the growing demand caused by population growth and climate change. Heterogeneous photocatalysis with semiconductors, which is an advanced oxidation process, has been proposed as a sustainable technology for water disinfection, as it does not need addition of any chemical substance and it can make use of solar light. Nevertheless, the technology has not been deployed industrially and commercially yet, mainly because of the lack of efficient reactor designs to treat large volumes of water, as most research focus on lab-scale experimentation. Additionally, very few applications are often tested employing actual sunlight. The present work provide a perspective on the operation trends and advances of solar heterogeneous photocatalytic reactors for water disinfection by systematically analyzing pertaining literature that made actual use of sunlight, with only 60 reports found out of the initially 1044 papers detected. These reports were discussed in terms of reactor employed, photocatalyst used, microorganism type, overall disinfection efficiency, and location. General prospects for the progression of the technology are provided as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.