Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.
The demand for insect-pollinated crops is increasing. Conventional agricultural intensification heavily relies on increased input of fertilizers, which can have negative effects on local biodiversity. Such effects may be particularly accentuated in biodiversity hotspots that are naturally nutrient-poor. Ecological intensification of farming, i.e. practices that increase production through the increase of ecosystem services, emerges as an alternative to conventional intensification. For example, practices that boost abundance and diversity of crop pollinators can lead to substantial increases in cropland productivity. However, little is known about the synergisms and trade-offs between fertilizer input and such ecological intensification practices. Here we investigate interactive effects between fertilization practices and the provision of ecosystem services in a biodiversity hotspot where conventional agriculture is rapidly expanding (Brazilian savannas). We focus on a highly nitrogen-demanding crop species that benefits from pollinators (the common bean, Phaseolus vulgaris L.), for which nitrogen input greatly varies in the study region. Our findings show that positive effects of native pollinators on crop yield are most accentuated under low inputs of nitrogen (e.g. equal to or below 72kg ha-1). This interactive effect could be due to changes in flower visitor community composition or behaviour. Our study also suggests that landscape management practices that minimize isolation from patches of natural vegetation and maximize its cover nearby (within 500 meters) of production areas can increase pollinator and biocontrol agent abundance and richness. Overall, these results suggest that ecological intensification is a valuable alternative for common bean production in Brazil, and potentially other regions of the world. Land productivity can be enhanced if an adequate balance of chemical inputs and landscape management is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.