Two chronic, nonfluent aphasia patients participated in overt naming fMRI scans, pre-and post-a series of repetitive transcranial magnetic stimulation (rTMS) treatments as part of a TMS study to improve naming. Each patient received ten, 1-Hz rTMS treatments to suppress a part of R pars triangularis. P1 was a 'good responder' with improved naming and phrase length; P2 was a 'poor responder' without improved naming.Pre-TMS (10 yr. poststroke), P1 had significant activation in R and L sensorimotor cortex, R IFG, and in both L and R SMA during overt naming fMRI (28% pictures named. At 3 mo. post-TMS (42% named), P1 showed continued activation in R and L sensorimotor cortex, R IFG, and in R and L SMA. At 16 mo. post-TMS (58% named), he also showed significant activation in R and L sensorimotor cortex mouth and R IFG. He now showed a significant increase in activation in the L SMA compared to pre-TMS and at 3 mo. post-TMS (p<.02; p<.05, respectively). At 16 mo. there was also greater activation in L than R SMA (p<.08). At 46 mo. post-TMS (42% named), this new LH pattern of activation continued. He improved on the Boston Naming Test from 11 pictures named pre-TMS, to scores ranging from 14-18 pictures, post-TMS (2 mo. to 43 mo. post-TMS). His longest phrase length (Cookie Theft picture) improved from 3 words pre-TMS, to 5-6 words post-TMS.Pre-TMS (1.5 yr. poststroke), P2 had significant activation in R IFG (3% pictures named). At 3 and 6 mo. post-TMS, there was no longer significant activation in R IFG, but significant activation was present in R sensorimotor cortex. On all three fMRI scans, P2 had significant activation in both the L and R SMA. There was no new, lasting perilesional LH activation across sessions for this patient. Over time, there was little or no change in his activation. His naming remained only at 1-2 pictures during all three fMRI scans. His BNT score and longest phrase length remained at 1 word, post-TMS.Lesion site may play a role in each patient's fMRI activation pattern and response to TMS treatment. P2, the poor responder, had an atypical frontal lesion in the L motor and premotor cortex that extended Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The fMRI data of our patient who had good response following TMS support the notion that restoration of the LH language network is linked in part, to better recovery of naming and phrase length in nonfluent aphasia. NIH Public Access
The use of neuromodulation as a treatment for major depressive disorder (MDD) has recently attracted renewed interest due to development of other non-pharmacological therapies besides electroconvulsive therapy (ECT) such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS). Method: We convened a working group of researchers to discuss the updates and key challenges of neuromodulation use for the treatment of MDD. results: The state-of-art of neuromodulation techniques was reviewed and discussed in four sections: [1] epidemiology and pathophysiology of MDD; [2] a comprehensive overview of the neuromodulation techniques; [3] using neuromodulation techniques in MDD associated with non-psychiatric conditions; [4] the main challenges of neuromodulation research and alternatives to overcome them. Discussion: ECT is the first-line treatment for severe depression. TMS and tDCS are strategies with a relative benign profile of side effects; however, while TMS effects are comparable to antidepressant drugs for treating MDD; further research is needed to establish the role of tDCS. DBS and VNS are invasive strategies with a possible role in treatment-resistant depression. In summary, MDD is a chronic and incapacitating condition with a high prevalence; therefore clinicians should consider all the treatment options including invasive and non-invasive neuromodulation approaches. Key words: comprehensive review, major depressive disorder, ECT, TMS, clinical guidelines.Estratégias de neuromodulação para o tratamento da depressão maior: desafios e recomendações de uma força-tarefa rEsuMo O uso de técnicas de neuromodulação para o tratamento do transtorno depressivo maior (TDM) tem despertado um renovado interesse nos últimos anos com o desenvolvimento de outras intervenções não-farmacólogicas além da eletroconvulsoterapia (ECT), como a estimulação magnética transcraniana (EMT), a estimulação transcraniana por corrente continua (ETCC), a estimulação cerebral profunda (DBS) e a estimulação de nervo vago (VNS). Método: Nós organizamos um grupo de trabalho com vários pesquisadores para discutir os avanços recentes e os principais desafios para o uso da neuromodulação no tratamento os principais desafios da pesquisa na neuromodulação e alternativas para superá-los. Discussão: ECT é o tratamento de primeira linha para depressão grave. EMT e ETCC são estratégias com um perfil benigno de efeitos adversos; contudo, enquanto os efeitos da EMT são comparáveis ao das drogas antidepressivas para o tratamento da TDM, a eficácia da ETCC ainda precisa ser estabelecida por mais pesquisas clínicas. DBS e VNS são intervenções invasivas com um papel possível para a depressão refratária. Em resumo, TDM é uma condição crônica, incapacitante e de alta prevalência; portanto na prática clínica todas as opções de tratamento possíveis, incluindo as farmacológicas e não-farmacológicas, devem ser consideradas. Palavras-chave: artigo de revisão, tra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.