Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Aim: Lactobacillus sakei 2a isolated from sausage and presenting an in vitro antagonistic activity against Listeria monocytogenes Scott A was tested for a protective effect in mice experimentally challenged with the enterobacteria. Methods and Results: In the experimental group, germ‐free mice (n = 24) were inoculated intragastrically with 0·1 ml of a suspension containing 108 colony forming units (CFU) of Lact. sakei and 4 days later the animals were challenged intragastrically with 0·1 ml of a suspension containing 108 CFU of L. monocytogenes. Control group (n = 24) was only inoculated with the bacterial pathogen. Faecal counts showed that L. monocytogenes reached similar population levels (109 CFU g−1 of contents) in both the groups. Animals in the control group showed lower (P = 0·0004) survival frequency (58·3%) when compared with the experimental one (100%). Anatomopathological examination confirmed the mortality data. Conclusions: Lactobacillus sakei 2a can survive in the mammal digestive tract where showed a protective effect against L. monocytogenes. This phenomenon was not due to an antagonistic activity. Significance and Impact of the Study: Use of Lact. sakei 2a as a meat starter could inhibit not only L. monocytogenes growth in the fermented product but also pathogen virulence in the gastrointestinal tract.
Antimicrobial compounds produced by lactic acid bacteria can be explored as natural food biopreservatives. In a previous report, the main antimicrobial compounds produced by the Brazilian meat isolate Lactobacillus sakei subsp. sakei 2a, i.e., bacteriocin sakacin P and two ribosomal peptides (P2 and P3) active against Listeria monocytogenes, were described. In this study, we report the spectrum of activity, molecular mass, structural identity and mechanism of action of additional six antilisterial peptides produced by Lb. sakei 2a, detected in a 24 h-culture in MRS broth submitted to acid treatment (pH 1.5) and proper fractionation and purification steps for obtention of free and cell-bound proteins. The six peptides presented similarity to different ribosomal proteins of Lb. sakei subsp sakei 23K and the molecular masses varied from 4.6 to 11.0 kDa. All peptides were capable to increase the efflux of ATP and decrease the membrane potential in Listeria monocytogenes. The activity of a pool of the obtained antilisterial compounds [enriched active fraction (EAF)] against Listeria monocytogenes in a food model (meat gravy) during refrigerated storage (4 °C) for 10 days was also tested and results indicated that the populations of L. monocytogenes in the food model containing the acid extract remained lower than those at time 0-day, evidencing that the acid extract of a culture of Lb. sakei 2a is a good technological alternative for the control of growth of L. monocytogenes in foods.
The objective of this study was to determine the ecological relationships between bacterial species that colonize infected root canals. Root canal bacteria recovered from one patient with pulp canal necrosis were evaluated in vitro for synergistic and antagonistic activities determined by mono and co-culture growth kinetics and the production of bacteriocin-like substances using the double layer diffusion method.Peptostreptococcus prevotii triggered a significant increase of Fusobacterium nucleatum growth, while the former bacteria did not affect the growth of P. prevotii. The bacterial species did not produce antagonism activity against itself or against any of the other two species. Despite many studies have demonstrated the capability of root canal microorganisms to produce antagonistic substances, these in vitro experimental tests show the synergistic effect of P. prevotii on the growth of F. nucleatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.