Pseudo-marginal Markov chain Monte Carlo methods for sampling from intractable distributions have gained recent interest and have been theoretically studied in considerable depth. Their main appeal is that they are exact, in the sense that they target marginally the correct invariant distribution. However, the pseudo-marginal Markov chain can exhibit poor mixing and slow convergence towards its target. As an alternative, a subtly different Markov chain can be simulated, where better mixing is possible but the exactness property is sacrificed. This is the noisy algorithm, initially conceptualised as Monte Carlo within Metropolis, which has also been studied but to a lesser extent. The present article provides a further characterisation of the noisy algorithm, with a focus on fundamental stability properties like positive recurrence and geometric ergodicity. Sufficient conditions for inheriting geometric ergodicity from a standard Metropolis-Hastings chain are given, as well as convergence of the invariant distribution towards the true target distribution.
Keywords
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis-Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.
This paper introduces methodology for performing Bayesian inference sequentially on a sequence of posteriors on spaces of different dimensions. We show how this may be achieved through the use of sequential Monte Carlo (SMC) samplers (Del Moral et al., 2006, making use of the full flexibility of this framework in order that the method is computationally efficient. In particular, we introduce the innovation of using deterministic transformations to move particles effectively between target distributions with different dimensions. This approach, combined with adaptive methods, yields an extremely flexible and general algorithm for Bayesian model comparison that is suitable for use in applications where the acceptance rate in reversible jump Markov chain Monte Carlo (RJMCMC) is low. We demonstrate this approach on the well-studied problem of model comparison for mixture models, and for the novel application of inferring coalescent trees sequentially, as data arrives. arXiv:1612.06468v2 [stat.CO]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.