Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption.
There are different proposals in the literature on how to protect pedestrians using warning systems to alert drivers of their presence. They can be based on onboard perception systems or wireless communications. The evaluation of these systems has been focused on testing their ability to detect pedestrians. A problem that has received much less attention is the possibility of generating too many alerts in the warning systems. In this paper, we propose and analyze four different algorithms to take the decision on generating alerts in a warning system that is based on direct wireless communications between vehicles and pedestrians. With the algorithms, we explore different strategies to reduce unnecessary alerts. The feasibility of the implementation of the algorithms was evaluated with a deployment using real equipment, and tests were carried out to verify their behavior in real scenarios. The ability of each algorithm to reduce unnecessary alerts was evaluated with realistic simulations in an urban scenario, using a traffic simulator with vehicular and pedestrian flows. The results show the importance of tackling the problem of driver overload in warning systems, and that it is not straightforward to predict the load of alerts generated by an algorithm in a large-scale deployment, in which there are multiple interactions between vehicles and pedestrians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.