In this work an anaerobic digester is controlled using input-output linearization and Lyapunov-like function methods. It is assumed that model parameters are unknown, time-varying, and bounded, and upper or lower bounds are also unknown. To tackle the effect of input saturation, a state observer is designed. The tracking and observer errors are defined in terms of the noisy measured output instead of ideal output, given by the mathematical model. The design of the observer mechanism and the update laws is based on the Lyapunov-like function technique, whereas the design of the control law is based on the input-output linearization method. In this paper two important properties of the controlled system are proven. First, the observer error converges asymptotically to a residual set whose size is user-defined, and such convergence is not disrupted, neither by the input saturation nor by the parameter uncertainties. Second, when the control input is nonsaturated the tracking error converges to a residual set whose size is user-defined. The model parameter uncertainties are included to prove the convergence of errors. Finally, a numerical example to validate the developed control is presented.
La generación de electricidad amigable con el medio ambiente es un factor fundamental para el crecimiento económico y social de cualquier país. Recientemente la instalación de sistemas de generación fotovoltaicos se ha incrementado a nivel local, aunque su rendimiento depende del lugar de instalación y se ve afectado por diversos parámetros ambientales como la radiación, la temperatura y la precipitación. En el presente trabajo se lleva a cabo un análisis experimental del rendimiento, en términos de potencia generada, de un sistema solar fotovoltaico con inversor centralizado y con microinversores, instalado en la ciudad de Manizales, ubicada a 2.150 m s.n.m., temperatura promedio de 16.4 °C y precipitación de 1.878 mm al año. Históricamente, este municipio presenta dos periodos de tiempo lluviosos con alta nubosidad entre los meses de abril – junio y octubre – diciembre, y dos periodos de tiempo menos lluviosos entre los meses de enero–marzo y julio–septiembre. Para el experimento se implementó un sistema de generación solar fotovoltaico conformado por seis paneles solares marca Hybrytec con 270 W de potencia de generación cada uno, y dos sistemas de monitoreo – (i) Wifi – Box® para el arreglo fotovoltaico con inversor centralizado y (ii) EnvoyTM para el arreglo fotovoltaico con microinversores. Los parámetros ambientales recolectados por la estación meteorológica La Nubia, ubicada en los alrededores del sistema solar, y los datos recolectados por los sistemas de monitoreo implementados son analizados en el periodo de tiempo comprendido entre los meses de julio de 2018 y mayo de 2019. Se observa y se concluye que, a pesar de los altos niveles de precipitación promedio acumulada mensual (entre 71 mm y 262,2 mm) y los altos niveles de nubosidad (nublado o mayormente nublado el 76 % del tiempo), el arreglo fotovoltaico con microinversores presenta un 16,5 % de energía generada por encima del arreglo con inversor centralizado.
In this work a two-valued state feedback control for a plant of second order with known constant coefficients and an additive bounded disturbance is designed. In this controller the control signal can take only two possible values. The controller design is based on Lyapunov-like function method, achieving the convergence of the tracking error to a user-defined residual set. A boundedness condition for the user-defined reference signal is defined, which is necessary to allow out-put tracking. The developed scheme avoids large commutation rate of the control input. The controller design and stability analysis have important contributions with respect to closely related controllers based on the direct Lyapunov method, namely, (i) conditions to guarantee the expected convergence of the tracking error are established. These conditions are imposed on the reference signal and the extreme values of the control input. The stability analysis is developed by means of the Lyapunov-like function method and the Barbalat's Lemma and includes (ii) the bounded nature of the Lyapunov function, (iii) the monotonic convergence of the Lyapunov function to a residual set, and (iv) the asymptotic convergence of the tracking error to a residual set of user-defined size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.