Violacein is a violet pigment produced by Chromobacterium violaceum that possesses several functions such as antibacterial, antiviral, antifungal, and antioxidant activities. The search for potential compounds and therapies that may interfere with and modulate the gut microbial consortia without causing severe damage and increased resistance is important for the treatment of inflammatory, allergic, and metabolic diseases. The aim of the present work was to evaluate the ability of violacein to change microbial patterns in the mammalian gut by favoring certain groups over the others in order to be used as a therapy for diseases associated with changes in the intestinal microflora. To do this, we used male Wistar rats, and administered violacein orally, in low (50 μg/ml) and high (500 μg/ml) doses for a month. Initially, the changes in the microbial diversity were observed by DGGE analyses that showed that the violacein significantly affects the gut microbiota of the rats. Pyrosequencing of 16S rDNA was then employed using a 454 GS Titanium platform, and the results demonstrated that higher taxonomic richness was observed with the low violacein treatment group, followed by the control group and high violacein treatment group. Modulation of the microbiota at the class level was observed in the low violacein dose, where Bacilli and Clostridia (Firmicutes) were found as dominant. For the high violacein dose, Bacilli followed by Clostridia and Actinobacteria were present as the major components. Further analyses are crucial for a better understanding of how violacein affects the gut microbiome and whether this change would be beneficial to the host, providing a framework for the development of alternative treatment strategies for intestinal diseases using this compound.
Plasminogen (Plg) is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by several pathogenic species of bacteria to manipulate the host plasminogen system and facilitate invasion of tissues during infection by modifying the activation of this process through the binding of Plg at their surface. Bacteroides fragilis is the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses and anaerobic bacteraemia. The ability of B. fragilis to convert plasminogen (Plg) into plasmin has been associated with an outer membrane protein named Bfp60. In this study, we characterized the function of Bfp60 protein in B. fragilis 638R by constructing the bfp60 defective strain and comparing its with that of the wild type regarding binding to laminin-1 (LMN-1) and activation of Plg into plasmin. Although the results showed in this study indicate that Bfp60 surface protein of B. fragilis is important for the recognition of LMN-1 and Plg activation, a significant slow activation of Plg into plasmin was observed in the mutant strain. For that reason, the possibility of another unidentified mechanism activating Plg is also present in B. fragilis can not be discarded. The results demonstrate that Bfp60 protein is responsible for the recognition of laminin and Plg-plasmin activation. Although the importance of this protein is still unclear in the pathogenicity of the species, it is accepted that since other pathogenic bacteria use this mechanism to disseminate through the extracellular matrix during the infection, it should also contribute to the virulence of B. fragilis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.