We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two datasets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements D V r fid s /r s = (1970±45, 2132±65, 2100±200) Mpc from CMASS, the cross-correlation and WiggleZ, respectively. The distance scales derived from the two datasets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. We use correlated mock realizations to calculate the covariance between the three BAO constraints. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.
We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70,079 redshifts in the range z < 0.9 over an area of 731 deg 2 , and is designed to extend the datasets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40,531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28,269 redshifts form a magnitudelimited (r < 19.5) nearly-complete sub-sample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.
We present measurements of the normalized redshift-space three-point correlation function (3PCF) (Q z ) of galaxies from the Sloan Digital Sky Survey (SDSS) main galaxy sample. These measurements were possible because of a fast new N-point correlation function algorithm (called npt) based on multiresolutional k-d trees. We have applied npt to both a volume-limited (36 738 galaxies with 0.05 z 0.095 and −23 M 0.0 r −20.5) and magnitude-limited sample (134 741 galaxies over 0.05 z 0.17 and ∼M * ± 1.5) of SDSS galaxies, and find consistent results between the two samples, thus confirming the weak luminosity dependence of Q z recently seen by other authors. We compare our results to other Q z measurements in the literature and find it to be consistent within the full jackknife error estimates. However, we find these errors are significantly increased by the presence of the 'Sloan Great Wall' (at z ∼0.08) within these two SDSS data sets, which changes the 3PCF by 70 per cent on large scales (s 10 h −1 Mpc). If we exclude this supercluster, our observed Q z is in better agreement with that obtained from the 2-degree Field Galaxy Redshift Survey (2dFGRS) by other authors, thus demonstrating the sensitivity of these higher order correlation functions to large-scale structures in the Universe. This analysis highlights that the SDSS data sets used here are not 'fair samples' of the Universe for the estimation of higher order clustering statistics and larger volumes are required. We study the shape dependence of Q z (s, q, θ) as one expects this measurement to depend on scale if the large-scale structure in the Universe has grown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.