Contents Flow cytometry has become an important technique in sperm evaluation and is increasingly used both for routine assessment and for research in veterinary science. We have revised the literature, describing fluorescent probes that have been used for analysing spermatozoa by flow cytometry, regarding: viability, acrosomal status, capacitation, mitochondrial status, apoptotic markers, oxidative stress markers, DNA damage, sperm counting and sperm sizing. Details and problems of some techniques are reviewed, with special attention to the occurrence of non‐sperm particles in the samples (‘debris’). New and promising aspects of flow cytometry, such as sperm sorting using viability markers as selection criteria, are highlighted. The relationship between flow cytometry analyses and fertility and their future improvements are considered.
We have applied a statistical protocol based on principal component analysis, clustering methods, and discriminant analysis for the identification of sperm subpopulations in computer-assisted sperm analysis (CASA) data. Samples were obtained from the cauda epididymis of 11 Iberian red deer and cryopreserved following a standard protocol. Motility by CASA was analyzed just after sperm recovery, just before freezing, and after thawing, and eight motility descriptors for each individual spermatozoon were recorded. Sperm viability and acrosomal status were also assessed. Subpopulation analysis was performed in four sequential steps: principal component analysis using the eight motility descriptors; nonhierarchical clustering analysis (k-means) using the first two principal components; hierarchical clustering analysis (UPGMA); and selection of the final number of clusters. Three clusters were obtained for each motility analysis: slow and nonlinear; rapid and linear; and rapid, high ALH, nonlinear. We detected variations in the clusters between treatments (initial, prefreezing and postthawed). Indeed, motility increased and linearity decreased in the prefreezing analysis. A discriminant analysis isolated three descriptors that were used again in the same statistical analysis, giving four clusters that resembled the pattern found in the first classification. We also performed a clustering analysis of the males according to prefreezing/postthawed variation of total motility, viability, and acrosomal status. The proportion of the linear subpopulations in the prefreezing treatment, in both clustering analyses, correlated positively with postthawed viability recovery. Our results show that clustering analysis of CASA data gives useful and practical information that is not obtained by conventional sperm analysis.
Antioxidants could improve sperm media, extending the viability of spermatozoa and protecting their DNA. The protective ability of lipoic acid, melatonin, Trolox and crocin was tested on red deer spermatozoa incubated at 37°C. Cryopreserved spermatozoa were thawed and incubated with 1 mM or 0.1 mM of each antioxidant, with or without oxidative stress (100 μM Fe2+). Motility (CASA), viability, mitochondrial membrane potential and acrosomal status were assessed. Lipoperoxidation (malondialdehyde production), intracellular reactive oxygen species (ROS) and DNA status (TUNEL) were checked at 4 h. Incubation alone increased ROS and decreased motility. Oxidative stress intensified these effects, increasing lipoperoxidation and DNA damage. Lipoic acid had little protective effect, whereas 1 mM melatonin showed limited protection. Trolox lowered ROS and lipoperoxidation both in oxidised and non-oxidised samples. In oxidised samples, Trolox prevented DNA and acrosomal damage, and ameliorated motility. Crocin at 1 mM showed similar results to Trolox, but noticeably stimulated motility and had no effect on lipoperoxidation. In a second experiment, a broader range of crocin and melatonin concentrations were tested, confirming the effects of crocin (positive effects noticeable at 0.5–0.75 mM), but showing an increase in lipoperoxidation at 2 mM. Melatonin was increasingly effective at 2.5 and 5 mM (ROS, lipoperoxidation and DNA status). Crocin seems a promising new antioxidant, but its particular effects on sperm physiology must be further studied, especially the consequences of motility stimulation and confirming its effect on lipoperoxidation. Melatonin might be useful at relatively high concentrations, compared to Trolox.
Fe 2C /ascorbate, hydrogen peroxide (H 2 O 2 ), and hypoxanthine/xanthine oxidase (XOD) are commonly used for inducing oxidative stress on spermatozoa. A comparative study of these agents was carried out on thawed spermatozoa from red deer. First, we tested a high, medium, and low concentration of each agent: 100, 10, and 1 mM Fe 2C (hydroxyl radical generator); 1 mM, 100, and 10 mM H 2 O 2 ; and 100, 10, and 1 mU/ml XOD (superoxide and H 2 O 2 generator), incubated at 37 8C for 180 min. Intracellular reactive oxygen species (ROS; H 2 DCFDA) increased with dose and time similarly for the three systems at each concentration level. Motility and mitochondrial membrane potential (Dj m ) were considerably decreased by H 2 O 2 (1 mM and 100 mM) and XOD (100 and 10 mU/ml
In the present study, we have related mitochondrial membrane potential (DeltaPsim) and forward scatter (FSC) to apoptotic-related changes in spermatozoa. Thawed red deer spermatozoa were incubated in synthetic oviductal fluid medium (37 degrees C, 5% CO2), with or without antioxidant (100 microm Trolox). At 0, 3, 6 and 9 h, aliquots were assessed for motility and were stained with a combination of Hoechst 33342, propidium ioide (PI), YO-PRO-1 and Mitotracker Deep Red for flow cytometry. The proportion of spermatozoa YO-PRO-1+ and PI+ (indicating a damaged plasmalemma; DEAD) increased, whereas that of YO-PRO-1- and PI- (INTACT) spermatozoa decreased. The proportion of YO-PRO-1+ and PI- spermatozoa (altered plasmalemma; APOPTOTIC) did not change. Both DEAD and APOPTOTIC spermatozoa had low DeltaPsim. Most high-DeltaPsim spermatozoa were INTACT, and their proportion decreased with time. The FSC signal also differed between different groups of spermatozoa, in the order APOPTOTIC > DEAD > INTACT/low DeltaPsim > INTACT/high DeltaPsim; however, the actual meaning of this difference is not clear. APOPTOTIC spermatozoa seemed motile at 0 h, but lost motility with time. Trolox only slightly improved the percentage of INTACT spermatozoa (P < 0.05). The population of APOPTOTIC spermatozoa in the present study may be dying cells, possibly with activated cell death pathways (loss of DeltaPsim). We propose that the sequence of spermatozoon death here would be: (1) loss of DeltaPsim; (2) membrane changes (YO-PRO-1+ and PI-); and (3) membrane damage (PI+). INTACT spermatozoa with low DeltaPsim or altered FSC may be compromised cells. The present study is the first that directly relates membrane integrity, apoptotic markers and mitochondrial status in spermatozoa. The results of the present study may help us understand the mechanisms leading to loss of spermatozoon viability after thawing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.