The Internet heavily relies on Content Distribution Networks and transparent caches to cope with the ever-increasing traffic demand of users. Content, however, is essentially versatile: once published at a given time, its popularity vanishes over time. All requests for a given document are then concentrated between the publishing time and an effective perishing time.In this paper, we propose a new model for the arrival of content requests, which takes into account the dynamical nature of the content catalog. Based on two large traffic traces collected on the Orange network, we use the semi-experimental method and determine invariants of the content request process. This allows us to define a simple mathematical model for content requests; by extending the so-called "Che approximation", we then compute the performance of a LRU cache fed with such a request process, expressed by its hit ratio. We numerically validate the good accuracy of our model by comparison to tracebased simulation.
The Internet increasingly focuses on content, as exemplified by the now popular Information Centric Networking paradigm. This means, in particular, that estimating content popularities becomes essential to manage and distribute content pieces efficiently. In this paper, we show how to properly estimate content popularities from a traffic trace.Specifically, we consider the problem of the popularity inference in order to tune content-level performance models, e.g. caching models. In this context, special care must be taken due to the fact that an observer measures only the flow of requests, which differs from the model parameters, though both quantities are related by the model assumptions. Current studies, however, ignore this difference and use the observed data as model parameters. In this paper, we highlight the inverse problem that consists in determining parameters so that the flow of requests is properly predicted by the model. We then show how such an inverse problem can be solved using Maximum Likelihood Estimation. Based on two large traces from the Orange network and two synthetic datasets, we eventually quantify the importance of this inversion step for the performance evaluation accuracy.
Abstract. The goal of the paper is to evaluate the miss probability of a Least Recently Used (LRU) cache, when it is offered a non-stationary request process given by a Poisson cluster point process. First, we construct a probability space using Palm theory, describing how to consider a tagged document with respect to the rest of the request process. This framework allows us to derive a fundamental integral formula for the expected number of misses of the tagged document. Then, we consider the limit when the cache size and the arrival rate go to infinity in proportion, and use the integral formula to derive an asymptotic expansion of the miss probability in powers of the inverse of the cache size. This enables us to quantify and improve the accuracy of the so-called Che approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.