Abstract. For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.
Slope processes such as slides and debris flows, are among the main events that induce effects on the Rio Grande sediment transport capacity. The slides mainly affect the slope of the Rio Grande river basin while debris and mud flows phenomena take place in the tributary valleys. In the past decades several mass movements occurred causing victims and great damages to roads and villages and therefore hazard assessment and risk mitigation is of paramount importance for a correct development of the area. This is also an urgent need since the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. The growing tourism business may lead to an uncontrolled urbanization of the valley with the consequent enlargement of threatened areas. <br><br> In this framework mitigation measures have to take into account not only technical aspects related to the physical behaviour of the moving masses but also environmental and sociological factors that could influence the effectiveness of the countermeasures. <br><br> Mitigation of landslide effects is indeed rather complex because of the large extension of the territory and the particular geological and geomorphological setting. Moreover the necessity to maintain the natural condition of the area as prescribed by UNESCO, make this task even more difficult. <br><br> Nowadays no in-depth study of the entire area exists, therefore an integrated and multidisciplinary investigation plan is going to be set up including geological and geomorphological investigations as well as archaeological and historical surveys. The better understanding of geomorphological evolution processes of the Quebrada de Humahuaca will bridge the gap between the necessity of preservation and the request of safety keeping of the recommendation by UNESCO
This paper describes the hydrogeological hazard in a reach of Quebrada de Humahuaca, (Upper Valley of Rio Grande de Jujuy, in the Argentine Andes), elected a World Heritage Site by UNESCO in 2003. Along the Quebrada, the Rio Huasamayo, flowing into the Rio Grande, formed a large alluvial fan where the village of Tilcara was built. The final reach of Rio Huasamayo is an artificial channel, embanked by unconsolidated material removed from the riverbed. The village is located in an area at a lower elevation with respect to the riverbed, still in aggradation; so it is affected by an evident hydrogeological hazard. The main cause of the riverbed aggradation is the enormous sediment supply from the slopes of the Rio Huasamayo basin. The aim of the paper is to estimate the soil loss on the slopes and the consequent sediment supply to the main stream, identifying the areas of the basin mostly affected by erosion processes that cause the aggradation of the Rio Huasamayo riverbed. In this case, due to the lack of hydrometeorological stations (monitoring rainfalls, temperature, flow rates, etc.), soil loss and sediment supply to the main stream cannot be estimated through the application of commonly used models in the literature (e.g., USLE, RUSLE, USPED). Here the Gavrilovic method (EPM) was applied in combination with the data of the CORINE Project, allowing the estimation of the volume of material exiting from the catchment. So the main supplying areas (sub-basins of the Rio Huasamayo) can be identified where focused interventions for the control of solid transport could be realized, to mitigate the process of riverbed aggradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.