The fabrication of varied molecular architectures in layer-by-layer (LbL) films is exploited to control the photoluminescence (PL) of poly(p-phenylene vinylene) (PPV) in an unprecedented way. This was achieved by controlling the Förster energy transfer between PPV layers (donors) and layers of a commercial azodye, Brilliant Yellow (BY) (acceptors). Energy transfer was controlled by inserting spacer layers of inert polymers between PPV and BY layers and by photoaligning the BY molecules via trans-cis-trans isomerization. The PPV/BY LbL films displayed polarized PL whose intensity could be varied almost continuously by changing the time of photoalignment, which was carried out by impinging a linearly polarized laser light simultaneously to the PL experiments. For PPV/BY films with no spacer layers, PL was completely quenched, but its intensity increased with the number of spacing layers. Further increase in PL was obtained by photoaligning the BY molecules perpendicularly to the PPV molecules. This minimizes energy transfer, since Förster processes are directional, dipole-dependent resonant transfers. Energy transfer is also controlled by imparting a preferential orientation of the PPV chains on PPV/BY LbL films deposited onto flexible Teflon substrates that may be stretched.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.