The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution.
Drought is a global problem for crop productivity. Therefore, the objective of this research was to evaluate five dry-Caribbean Bacillus spp. strains in drought stress amelioration in maize plants. Maize seeds were single-strain inoculated and sown in pots under greenhouse conditions. After 12 days, plants were subjected to 33 days of drought conditions, i.e., 30% of soil field capacity, and then collected to measure leaf and root dry biomass, plant height, antioxidant enzymes, proline accumulation, and P+, Ca2+, and K+ uptake. Results correlated drought stress amelioration with the inoculation of Bacillus spp. strains XT13, XT38 and XT110. Inoculated plants showed increases in dry biomass, plant height, and K+ and P+ uptake. The overall maize antioxidant response to bacterial inoculation under drought stress showed dependence on proline accumulation and decreases in ascorbate peroxidase and glutathione reductase activities. Moreover, results suggest that this stress amelioration is driven by a specific plant-strain correlation observed in antioxidant response changes in inoculated plants under stress. Also, there is a complex integration of several mechanisms, including plant growth-promotion traits and nutrient uptake. Hence, the use of dry-Caribbean plant growth-promoting Bacillus strains represents an important biotechnological approach to enhance crop productivity in arid and semi-arid environments.
The low availability of phosphorus (P) in the soil drastically limits the world productivity of crops such as cotton. In order to contribute sustainably to the solution of this problem, the current study aimed to evaluate the capacity of phosphate-solubilising bacteria to improve plant growth and its relationship with physiological parameters, as well as the shoot P content in cotton plants in a soil with low P availability amended with rock phosphate. The results showed that, of the six plant growth-promoting bacteria strains evaluated under greenhouse conditions, the Rhizobium strain B02 significantly promoted growth, shoot P content and photosynthetic rate. This strain also improved the transpiration rate and the relative content of chlorophyll but without significant differences. Remarkably, Rhizobium sp. B02 had a more significant effect on plant growth compared to the P nutrition. Furthermore, the effect of its inoculation was more pronounced on the roots' growth compared to the shoot. Finally, application of Rhizobium strain B02 showed the capacity to optimize the use of low-solubility fertilizer as the rock phosphate. These findings could be associated with the metabolic activities of plant growth promotion exhibited by phosphate-solubilising strains, such as phosphate solubilisation, production of indole compounds and siderophores synthesis. In conclusion, this research provides evidence of the biotechnological potential of the Rhizobium genus as phosphate-solubilising bacteria with multiple plant growth-promoting activities capable of improving the plant growth and phosphate nutrition of non-leguminous crops such as cotton in soil with low P availability amended with rock phosphate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.