Accurately detecting and counting fruits during plant growth using imaging and computer vision is of importance not only from the point of view of reducing labor intensive manual measurements of phenotypic information, but also because it is a critical step toward automating processes such as harvesting. Deep learning based methods have emerged as the state-of-the-art techniques in many problems in image segmentation and classification, and have a lot of promise in challenging domains such as agriculture, where they can deal with the large variability in data better than classical computer vision methods. This paper reports results on the detection of tomatoes in images taken in a greenhouse, using the MaskRCNN algorithm, which detects objects and also the pixels corresponding to each object. Our experimental results on the detection of tomatoes from images taken in greenhouses using a RealSense camera are comparable to or better than the metrics reported by earlier work, even though those were obtained in laboratory conditions or using higher resolution images. Our results also show that MaskRCNN can implicitly learn object depth, which is necessary for background elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.