We report spatially resolved Raman scattering results of polycrystalline monolayer graphene films to study the effects of defects, strains, and strain fluctuations on the electrical performance of graphene. Two-dimensional Raman images of the integrated intensities of the G and D peaks (I
G and I
D) were used to identify the graphene domain boundaries. The domain boundaries were also identified using Raman images of I
D/I
G and I
2D/I
G ratios and 2D spectral widths. Interestingly, the I
D maps showed that the defects within individual domains significantly increased for the graphene with large domain size. The correlation analysis between the G and 2D peak energies showed that biaxial tensile strain was more developed in the graphene with large domain size than in the graphene with small domain size. Furthermore, spatial variations in the spectral widths of the 2D peaks over the graphene layer showed that strain fluctuations were more pronounced in the graphene with large domain size. It was observed that the mobility (sheet resistance) was decreased (increased) for the graphene with large domain size. The degradation of the electrical transport properties of the graphene with large domain size is mainly due to the defects, tensile strains, and local strain fluctuations within the individual domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.