In today's world, closed circuit television, cellphone photographs and videos, open-source intelligence (i.e., social media/web data mining), and other sources of photographic evidence are commonly used by police forces to identify suspects and victims of both online and offline crimes. Human characteristics, such as age, height, weight, gender, hair color, etc., are often used by police officers and witnesses in their description of unidentified suspects. In certain circumstances, the age of the victim can result in the determination of the crime's categorization, e.g., child abuse investigations. Various automated machine learning-based techniques have been implemented for the analysis of digital images to detect soft biometric traits, such as age and gender, and thus aid detectives and investigators in progressing their cases. This paper documents an evaluation of existing cognitive age prediction services. The evaluative and comparative analysis of the various services was conducted to identify trends and issues inherent to their performance. One significant contributing factor impeding the accurate development of the services investigated is the notable lack of sufficient sample images in specific age ranges, i.e., underage and elderly. To overcome this issue, a dataset generator was developed, which harnesses collections of several unbalanced datasets and forms a balanced, curated dataset of digital images annotated with their corresponding age and gender.
Achieving high performance for facial age estimation with subjects in the borderline between adulthood and non-adulthood has always been a challenge. Several studies have used different approaches from the age of a baby to an elder adult and different datasets have been employed to measure the mean absolute error (MAE) ranging between 1.47 to 8 years. The weakness of the algorithms specifically in the borderline has been a motivation for this paper. In our approach, we have developed an ensemble technique that improves the accuracy of underage estimation in conjunction with our deep learning model (DS13K) that has been fine-tuned on the Deep Expectation (DEX) model. We have achieved an accuracy of 68% for the age group 16 to 17 years old, which is 4 times better than the DEX accuracy for such age range. We also present an evaluation of existing cloud-based and offline facial age prediction services, such as Amazon Rekognition, Microsoft Azure Cognitive Services, How-Old.net and DEX.
Multi-year digital forensic backlogs have become commonplace in law enforcement agencies throughout the globe. Digital forensic investigators are overloaded with the volume of cases requiring their expertise compounded by the volume of data to be processed. Artificial intelligence is often seen as the solution to many big data problems. This paper summarises existing artificial intelligence based tools and approaches in digital forensics. Automated evidence processing leveraging artificial intelligence based techniques shows great promise in expediting the digital forensic analysis process while increasing case processing capacities. For each application of artificial intelligence highlighted, a number of current challenges and future potential impact is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.