Alpha-band (8 -12 Hz) EEG activity has been linked to visual attention since the earliest EEG studies. More recent studies using spatial cuing paradigms have shown that alpha is suppressed over the hemisphere contralateral to a to-be-attended location, suggesting that alpha serves as a mechanism of preparatory attention. Here, we demonstrate that alpha also plays a role in active target processing. EEG activity was recorded from a group of healthy male and female human subjects in two visual search experiments. In addition to alpha activity, we also assessed the N2pc event-related potential component, a lateralized transient EEG response that has been tightly linked with the focusing of attention on visual targets. We found that the visual search targets triggered both an N2pc component and a suppression of alpha-band activity that was greatest over the hemisphere contralateral to the target (which we call "target-elicited lateralized alpha suppression" or TELAS). In Experiment 1, both N2pc and TELAS were observed for targets presented in the lower visual field but were absent for upper-field targets. However, these two lateralized effects had different time courses and they responded differently to manipulations of crowding in Experiment 2. These results indicate that lateralized alpha-band activity is involved in active target processing and is not solely a preparatory mechanism and also that TELAS and N2pc reflect a related but separable neural mechanism of visuospatial attention.The very first EEG studies demonstrated that alpha-band (8 -12 Hz) EEG oscillations are suppressed when people attend to visual information and more recent research has shown that cuing an individual to expect a target at a specific location produces lateralized suppression in the contralateral hemisphere. Therefore, lateralized alpha may serve as a preparatory mechanism. In the present study, we found that a similar lateralized alpha effect is triggered by the appearance of a visual target even though the location could not be anticipated, demonstrating that alpha also serves as an active mechanism of target processing. Moreover, we found that alpha lateralization can be dissociated from other lateralized measures of target selection, indicating that it reflects a distinct mechanism of attention.
For more than 60 years, the gold standard for assessing aversive conditioning in humans has been the skin conductance response (SCR), which arises from the activation of the peripheral nervous system. Although the SCR has been proven useful, it has some properties that impact the kinds of questions it can be used to answer. In particular, the SCR is slow, reaching a peak 4-5 s after stimulus onset, and it decreases in amplitude after a few trials (habituation). The present study asked whether the late positive potential (LPP) of the ERP waveform could be a useful complementary method for assessing aversive conditioning in humans. The SCR and LPP were measured in an aversive conditioning paradigm consisting of three blocks in which one color was paired with a loud noise (CS+) and other colors were not paired with the noise (CS-). Participants also reported the perceived likelihood of being exposed to the noise for each color. Both SCR and LPP were significantly larger on CS+ trials than on CS- trials. However, SCR decreased steeply after the first conditioning block, whereas LPP and self-reports were stable over blocks. These results indicate that the LPP can be used to assess aversive conditioning and has several useful properties: (a) it is a direct response of the central nervous system, (b) it is fast, with an onset latency of 300 ms, (c) it does not habituate over time.
Natural disasters such as earthquakes are associated to adverse perinatal outcomes that impact negatively the entire maternal-neonatal healthcare system.
Attention helps us to be aware of the external world, and this may be especially important when a threat stimulus predicts an aversive outcome. EEG alpha-band suppression has long been considered as a neural signature of attentional engagement. The present study was designed to test whether attentional engagement, as indexed by alpha-band suppression, is increased in a sustained manner following a conditioned stimulus (CS) that is paired with an aversive (CS+) vs. neutral (CS-) outcome. We tested 70 healthy young adults in aversive conditioning and extinction paradigms. One of three colored circles served as the CS+, which was paired in 50% of the trials with a noise burst (unconditioned stimulus, US). The other colored circles (CS-) were never paired with the US. For conditioning, we found greater alpha-band suppression for the CS+ compared to the CS-; this suppression was sustained through the time of the predicted US. This effect was significantly reduced for extinction. These results indicate that conditioned threat stimuli trigger an increase in attentional engagement as subjects monitor the environment for the predicted aversive stimulus. Moreover, this alpha-band suppression effect may be valuable for future studies examining normal or pathological increases in attentional monitoring following threat stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.