Assuring the safety of automated vehicles is essential for their timely introduction and acceptance by policymakers and the public. To assess their safe design and robust decision making in response to all possible scenarios, new methods that use a scenario-based testing approach are needed, as testing on public roads in normal traffic would require driving millions of kilometres. We make use of the scenario-based testing approach and propose a method to model simulated scenarios using Gaussian Process based models to predict untested scenario outcomes. This enables us to efficiently determine the performance boundary, where the safe and unsafe scenarios can be evidently distinguished from each other. We present an iterative method that optimises the parameter space of a logical scenario towards the most critical scenarios on this performance boundary. Additionally, we conduct a novel probabilistic sensitivity analysis by efficiently computing several variance-based sensitivity indices using the Gaussian Process models and evaluate the relative importance of the scenario input parameters on the scenario outcome. We critically evaluate and investigate the usefulness of the proposed Gaussian Process based approach as a very efficient surrogate model, which can model the logical scenarios effectively in the presence of uncertainty. The proposed approach is applied on an exemplary logical scenario and shows viability in finding concrete critical scenarios. The reported results, derived from the proposed approach, could pave the way to more efficient testing of automated vehicles and instruct further physical tests on the determined critical scenarios.
Safety is an essential aspect in the facilitation of automated vehicle deployment. Current testing practices are not enough, and going beyond them leads to infeasible testing requirements, such as needing to drive billions of kilometres on public roads. Automated vehicles are exposed to an indefinite number of scenarios. Handling of the most challenging scenarios should be tested, which leads to the question of how such corner cases can be determined. We propose an approach to identify the performance boundary, where these corner cases are located, using Gaussian Process Classification. We also demonstrate the classification on an exemplary traffic jam approach scenario, showing that it is feasible and would lead to more efficient testing practices.
This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.