We propose a new model reduction framework for problems that exhibit transport phenomena. As in the moving finite element method (MFEM), our method employs time-dependent transformation operators and, especially, generalizes MFEM to arbitrary basis functions. The new framework is suitable to obtain a low-dimensional approximation with small errors even in situations where classical model order reduction techniques require much higher dimensions for a similar approximation quality. Analogously to the MFEM framework, the reduced model is designed to minimize the residual, which is also the basis for an a-posteriori error bound. Moreover, since the dependence of the transformation operators on the reduced state is nonlinear, the resulting reduced order model is obtained by projecting the original evolution equation onto a nonlinear manifold. Furthermore, for a special case, we show a connection between our approach and the method of freezing, which is also known as symmetry reduction. Besides the construction of the reduced order model, we also analyze the problem of finding optimal basis functions based on given data of the full order solution. Especially, we show that the corresponding minimization problem has a solution and reduces to the proper orthogonal decomposition of transformed data in a special case. Finally, we demonstrate the effectiveness of our method with several analytical and numerical examples.
In this contribution, we apply a recently introduced nonlinear model reduction framework based on dynamically transformed modes to the linear wave equation with periodic boundary conditions. We demonstrate that under reasonable assumptions, the reduced-order model can be evaluated efficiently. Consequently, we obtain that the state variables of the reduced-order model are constant or linear functions with respect to time.
We propose a new hyper-reduction method for a recently introduced nonlinear model reduction framework based on dynamically transformed basis functions and especially well-suited for transport-dominated systems. Furthermore, we discuss applying this new method to a wildland fire model whose dynamics feature traveling combustion waves and local ignition and is thus challenging for classical model reduction schemes based on linear subspaces. The new hyper-reduction framework allows us to construct parameter-dependent reduced-order models (ROMs) with efficient offline/online decomposition. The numerical experiments demonstrate that the ROMs obtained by the novel method outperform those obtained by a classical approach using the proper orthogonal decomposition and the discrete empirical interpolation method in terms of run time and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.