Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded ssDNA annealing proteins (SSAPs) improve HR 1000-fold above endogenous levels; however, they are not broadly functional. Using
Escherichia coli
,
Lactococcus lactis
,
Mycobacterium smegmatis
,
Lactobacillus rhamnosus
, and
Caulobacter crescentus
we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host’s single-stranded DNA-binding protein (SSB), and are portable between species if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with a paired SSB can significantly improve activity, in some species enabling SSAP functionality even without host-compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes inaccessible through sequential nucleotide conversions.
Bacterial genome editing methods are used to engineer strains for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but traditional techniques using endogenous RecA-mediated pathways are inefficient and 5 laborious. Phage encoded RecT proteins can improve HR over 1000-fold, but these proteins have limited portability between species. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus, and Caulobacter crescentus we investigated the hostlimited functionality of RecTs. We find that these proteins specifically recognize the 7 Cterminal amino acids of the bacterial single-stranded DNA-binding protein (SSB), and are 10 portable between species only if compatibility with this host domain is maintained. Furthermore, in some species, we find that co-expressing otherwise incompatible RecTs with a paired bacterial SSB is sufficient to establish functionality. Finally, we demonstrate that high-efficiency HR surpasses the mutational capacity of more widely used error-prone methods for genome diversification, and can be used to identify exceptional phenotypes inaccessible through 15 sequential nucleotide conversions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.