Evidence is mounting that the novel corona virus SARS-CoV2 inflicts neurological symptoms in a subgroup of COVID-19 patients. While plenty of theories on the route of neuroinvasion have been proposed, little histological evidence has been presented supporting any of these hypotheses. Therefore, we carried out immunostainings for ACE2 and TMPRSS2, two proteinases crucial for the entry of SARS-CoV2 into host cells, in the human enteric nervous system (ENS), as well as in the choroid plexus of the lateral ventricles. Both of these sites are important, yet often neglected entry gates to the nervous system. We found that ACE2 and TMPRSS2 are expressed by enteric neurons and glial cells of the small and large intestine, as well as choroid plexus epithelial cells, indicating that these cells meet the molecular requirements for viral entry. Together, our results are fundamental histological evidence substantiating current theories of neuroinvasion by SARS-CoV2.
The choroid plexus (CP) consists of specialized ependymal cells and underlying blood vessels and stroma producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are considered the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In this study, we analyzed the expression of aquaporins in the human CP using immunofluorescence and qPCR. As previously reported, AQP1 was expressed apically in CP epithelial cells. Surprisingly, and previously unknown, many cells in the CP epithelium were also positive for aquaporin-4 (AQP4), normally restricted to ventricle-lining ependymal cells and astrocytes in the brain. Expression of AQP1 and AQP4 was found in the CP of all eight body donors investigated (3 males, 5 females; age 74–91). These results were confirmed by qPCR, and by electron microscopy detecting orthogonal arrays of particles. To find out whether AQP4 expression correlated with the expression pattern of relevant transport-related proteins we also investigated expression of NKCC1, and Na/K-ATPase. Immunostaining with NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. We hypothesized that AQP4 expression in the CP was caused by age-related changes. To address this, we investigated mouse brains from young (2 months), adult (12 months) and old (30 months) mice. We found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Taken together, we provide evidence for AQP4 expression in the CP of the aging brain which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.
The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood–CSF barrier. These cells form a contiguous cell sheet with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast, CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin–dystroglycan complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan expression was associated with laminin staining in the glial plate and the CP epithelium. This suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and could possibly serve as a drainage and clearing pathway for metabolites.
The choroid plexus (CP) consists of specialized ependymal cells and underlying blood vessels and stroma producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are considered the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In this study, we analyzed the expression of aquaporins in the human CP using immunofluorescence and qPCR. As previously reported, AQP1 was expressed apically in CP epithelial cells. Surprisingly, and previously unknown, many cells in the CP epithelium were also positive for aquaporin-4 (AQP4), normally restricted to ventricle-lining ependymal cells and astrocytes in the brain. Expression of AQP1 and AQP4 was found in the CP of all eight body donors investigated (3 males, 5 females; age 74-91). These results were confirmed by qPCR, and by electron microscopy detecting orthogonal arrays of particles. To find out whether AQP4 expression correlated with the expression pattern of relevant transport-related proteins we also investigated expression of NKCC1, and Na/K-ATPase. Immunostaining with NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. We hypothesized that AQP4 expression in the CP was caused by age-related changes. To address this, we investigated mouse brains from young (2 months), adult (12 months) and old (30 months) mice. We found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Taken together, we provide evidence for AQP4 expression in the CP of the aging brain which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.
Background: The choroid plexus (CP) consists of specialized ependymal cells and underlying stroma and blood vessels, producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In contrast, ventricle-lining ependymal cells express aquaporin-4 (AQP4) basolaterallly. The initial purpose of this study was to analyze the expression of aquaporins in the ependyma – CP transition zone in the human brain to gain insights in aquaporin regulation. The results prompted us to investigate aquaporin expression in the mouse CP of different age groups. Methods: We analyzed the CP from eight body donors (age 74-91) applying immunofluorescence, qPCR, and freeze-fracture electron microscopy. We used antibodies against AQP1, AQP4, NKCC1, and Na/K-ATPase. In addition, we compared the CP from young (2 months), adult (12 months) and old (30 months) mice by qPCR and immunofluorescence. Results: Unexpectedly, many cells in the human CP were positive not only for AQP1 but also for AQP4, normally restricted to ependymal cells and astrocytes. Expression of AQP1 and AQP4 was found in the CP of all eight body donors. These results were confirmed by qPCR, and by electron microscopy detecting AQP4-specific orthogonal arrays of particles. To find out whether AQP4 expression correlated with relevant transport-related proteins we investigated expression of NKCC1 and Na/K-ATPase. Immunostaining for NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. To test for the possibility of age-related changes causing AQP4 expression in the CP, we analyzed mouse brains from different age groups and found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Conclusions: We provide evidence for AQP4 expression in the human and murine CP related to aging which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.