We solve the task of representing free forms by an arrangement of panels that are manufacturable by precise isometric bending of surfaces made from a small number of molds. In fact we manage to solve the paneling task with surfaces of constant Gaussian curvature alone. This includes the case of developable surfaces which exhibit zero curvature. Our computations are based on an existing discrete model of isometric mappings between surfaces which for this occasion has been refined to obtain higher numerical accuracy. Further topics are interesting connections of the paneling problem with the geometry of Killing vector fields, designing and actuating isometries, curved folding in the double-curved case, and quad meshes with rigid faces that are nevertheless flexible.
Representing smooth geometric shapes by polyhedral meshes can be quite difficult in situations where the variation of edges and face normals is prominently visible. Especially problematic are saddle-shaped areas of the mesh, where typical vertices with six incident edges are ill suited to emulate the more symmetric smooth situation. The importance of a faithful discrete representation is apparent for certain special applications like freeform architecture, but is also relevant for simulation and geometric computing. In this paper we discuss what exactly is meant by a good representation of saddle points, and how this requirement is stronger than a good approximation of a surface plus its normals. We characterize good saddles in terms of the normal pyramid in a vertex. We show several ways to design meshes whose normals enjoy small variation (implying good saddle points). For this purpose we define a discrete energy of polyhedral surfaces, which is related to a certain total absolute curvature of smooth surfaces. We discuss the minimizers of both functionals and in particular show that the discrete energy is minimal not for triangle meshes, but for principal quad meshes. We demonstrate our procedures for optimization and interactive design by means of meshes intended for architectural design.
We solve the task of representing free forms by an arrangement of panels that are manufacturable by precise isometric bending of surfaces made from a small number of molds. In fact we manage to solve the paneling task with surfaces of constant Gaussian curvature alone. This includes the case of developable surfaces which exhibit zero curvature. Our computations are based on an existing discrete model of isometric mappings between surfaces which for this occasion has been refined to obtain higher numerical accuracy. Further topics are interesting connections of the paneling problem with the geometry of Killing vector fields, designing and actuating isometries, curved folding in the double-curved case, and quad meshes with rigid faces that are nevertheless flexible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.