In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibrated by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. The LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.
Engineered biological circuits are often disturbed by a variety of environmental factors. In batch culture, where the majority of synthetic circuit characterization occurs, environmental conditions vary as the culture matures. Turbidostats are powerful characterization tools that provide static culture environments; however, they are often expensive, especially when purchased in custom configurations, and are difficult to design and construct in a lab. Here, we present a low cost, open source multiplexed turbidostat that can be manufactured and used with minimal experience in electrical or software engineering. We demonstrate the utility of this system to profile synthetic circuit behavior in S. cerevisiae. We also demonstrate the flexibility of the design by showing that a fluorometer can be easily integrated.
In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibrated by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. The LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.In 2005, a light activated microbial ion channel (opsin) was expressed in mammalian neurons and used for millisecond timescale control of their activity in vitro 1 . However, because no instrument existed for delivering the necessary intensity of light to specific brain regions in live animals without major side effects, optogenetics contributed few neurobiological insights between 2005 and 2009 2 . During this period, the optical neural interface (ONI) -a brain-implantable optical fiber with a laser diode light source -was developed. The ONI was rapidly adopted by the neuroscience community and combined with opsins and other photoreceptors, resulting in a wave of breakthroughs in a short time period 2 . In 2002, a red/far red light-reversible transcriptional regulatory (promoter) system was developed for optical control of gene expression in S. cerevisiae 3 . In the 14 years that have followed, photoreceptors with diverse spectral properties have been used to control a remarkable range of cell biological processes in mechanistically tractable model organisms. For example, light-switchable promoter systems have been engineered in E. coli [4][5][6][7][8][9] 11,42,43 have also been placed under optogenetic control. However, no optical hardware has been developed to enable the broad research community to properly utilize these non-neural optogenetic tools, limiting their impact. For example, we recently engineered the Light Tube Array (LTA), a light emitting diode (LED)-based device that exposes 64 shaking incubated culture tubes to programmable light signals with an intensity range over three orders of magnitude and millisecond resolution 44 . Though the LTA enables unrivaled control of gene expression dynamics 44 , construction requires custom machined components, specialized assembly tools, and knowledge of electronic system design and programming is done in computer language. Additionally, experiments are not scalable due to the large instrument size (0.02 m 3 ) and requirement for connection to an external computer. Further...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.