Methane is one of the major contributors to global warming. The rumen microbiota is directly involved in methane production in cattle. The link between variation in rumen microbial communities and host genetics has important applications and implications in bioscience. Having the potential to reveal the full extent of microbial gene diversity and complex microbial interactions, integrated metagenomics and network analysis holds great promise in this endeavour. This study investigates the rumen microbial community in cattle through the integration of metagenomic and network-based approaches. Based on the relative abundance of 1570 microbial genes identified in a metagenomics analysis, the co-abundance network was constructed and functional modules of microbial genes were identified. One of the main contributions is to develop a random matrix theory-based approach to automatically determining the correlation threshold used to construct the co-abundance network. The resulting network, consisting of 549 microbial genes and 3349 connections, exhibits a clear modular structure with certain trait-specific genes highly over-represented in modules. More specifically, all the 20 genes previously identified to be associated with methane emissions are found in a module (hypergeometric test, p<10). One third of genes are involved in methane metabolism pathways. The further examination of abundance profiles across 8 samples of genes highlights that the revealed pattern of metagenomics abundance has a strong association with methane emissions. Furthermore, the module is significantly enriched with microbial genes encoding enzymes that are directly involved in methanogenesis (hypergeometric test, p<10).
To cope with the growing number of multimedia assets on smartphones and social media, an integrated approach for semantic indexing and retrieval is required. Here, we introduce a generic framework to fuse existing image and video analysis tools and algorithms into a unified semantic annotation, indexing and retrieval model resulting in a multimedia feature vector graph representing various levels of media content, media structures and media features. Utilizing artificial intelligence (AI) and machine learning (ML), these feature representations can provide accurate semantic indexing and retrieval. Here, we provide an overview of the generic multimedia analysis framework (GMAF) and the definition of a multimedia feature vector graph framework (MMFVGF). We also introduce AI4MMRA to detect differences, enhance semantics and refine weights in the feature vector graph. To address particular requirements on smartphones, we introduce an algorithm for fast indexing and retrieval of graph structures. Experiments to prove efficiency, effectiveness and quality of the algorithm are included. All in all, we describe a solution for highly flexible semantic indexing and retrieval that offers unique potential for applications such as social media or local applications on smartphones.
Obesity is a global challenge that affects health and wellbeing worldwide. In this position paper, we review the digital technology used in prevention of obesity and present the proposed STOP project that integrates state-of-the-art wearable technology, chatbot, gamification data fusion, and machine learning with the aim to provide personalised supportive feedback for preventing obesity and maintaining healthy weight. Implication of sensitive data with General Data Protection Regulation (GDPR) is discussed. We conclude that machine learning plays an important role in data fusion, analytics, and providing optimal messaging tailored design to support healthy weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.