Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.
Androgenetic alopecia (AGA), or male-pattern baldness, is the most common form of hair loss. Its pathogenesis is androgen dependent, and genetic predisposition is the major requirement for the phenotype. We demonstrate that genetic variability in the androgen receptor gene (AR) is the cardinal prerequisite for the development of early-onset AGA, with an etiological fraction of 0.46. The investigation of a large number of genetic variants covering the AR locus suggests that a polyglycine-encoding GGN repeat in exon 1 is a plausible candidate for conferring the functional effect. The X-chromosomal location of AR stresses the importance of the maternal line in the inheritance of AGA.
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62×10−9–1.01×10−12). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06–1.55, p = 8.9×10−3). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4×10−88]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions.
Molecular karyotyping is being increasingly applied to delineate novel disease causing microaberrations and related syndromes in patients with mental retardation of unknown aetiology. We report on three unrelated patients with overlapping de novo interstitial microdeletions involving 5q14.3-q15. All three patients presented with severe psychomotor retardation, epilepsy or febrile seizures, muscular hypotonia and variable brain and minor anomalies. Molecular karyotyping revealed three overlapping microdeletions measuring 5.7, 3.9 and 3.6 Mb, respectively. The microdeletions were identified using single nucleotide polymorphism (SNP) arrays (Affymetrix 100K and Illumina 550K) and array comparative genomic hybridization (1 Mb Sanger array-CGH). Confirmation and segregation studies were performed using fluorescence in situ hybridization (FISH) and quantitative PCR. All three aberrations were confirmed and proven to have occurred de novo. The boundaries and sizes of the deletions in the three patients were different, but an overlapping region of around 1.6 Mb in 5q14.3 was defined. It included five genes: CETN3, AC093510.2, POLR3G, LYSMD3 and the proximal part of GPR98/MASS1, a known epilepsy gene. Haploinsufficiency of GPR98/MASS1 is probably responsible for the seizure phenotype in our patients. At least one other gene contained in the commonly deleted region, LYSMD3, shows a high level of central nervous expression during embryogenesis and is also, therefore, a good candidate gene for other central nervous system (CNS) symptoms, such as psychomotor retardation, brain anomalies and muscular hypotonia of the 5q14.3 microdeletion syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.