Abstraction of a continuous-space model into a finite state and input dynamical model is a key step in formal controller synthesis tools. To date, these software tools have been limited to systems of modest size (typically ≤ 6 dimensions) because the abstraction procedure suffers from an exponential runtime with respect to the sum of state and input dimensions. We present a simple modification to the abstraction algorithm that dramatically reduces the computation time for systems exhibiting a sparse interconnection structure. This modified procedure recovers the same abstraction as the one computed by a brute force algorithm that disregards the sparsity. Examples highlight speed-ups from existing benchmarks in the literature, synthesis of a safety supervisory controller for a 12-dimensional and abstraction of a 51-dimensional vehicular traffic network.
We propose a new approach to the numerical solution of radiative transfer equations with certified a posteriori error bounds. A key role is played by stable Petrov-Galerkin type variational formulations of parametric transport equations and corresponding radiative transfer equations. This allows us to formulate an iteration in a suitable, infinite dimensional function space that is guaranteed to converge with a fixed error reduction per step. The numerical scheme is then based on approximately realizing this iteration within dynamically updated accuracy tolerances that still ensure convergence to the exact solution. To advance this iteration two operations need to be performed within suitably tightened accuracy tolerances. First, the global scattering operator needs to be approximately applied to the current iterate within a tolerance comparable to the current accuracy level. Second, parameter dependent linear transport equations need to be solved, again at the required accuracy of the iteration. To ensure that the stage dependent error tolerances are met, one has to employ rigorous a posteriori error bounds which, in our case, rest on a Discontinuous Petrov-Galerkin (DPG) scheme. These a posteriori bounds are not only crucial for guaranteeing the convergence of the perturbed iteration but are also used to generate adapted parameter dependent spatial meshes. This turns out to significantly reduce overall computational complexity. Since the global operator is only applied, we avoid the need to solve linear systems with densely populated matrices. Moreover, the approximate application of the global scatterer accelerated through low-rank approximation and matrix compression techniques. The theoretical findings are illustrated and complemented by numerical experiments with non-trivial scattering kernels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.