Detritus is an important energy source of stream food webs. Being a mix of allochthonous and autochthonous sources, it is often unknown, which components contribute to the growth of stream organisms. This study focussed on the comparison of two different detritus types (riparian detritus and stream detritus) with respect to food quality and effects on growth as a fitness parameter of juvenile freshwater pearl mussels (FPM). We performed feeding experiments with juvenile FPM under laboratory conditions using the two detritus types from four different natural sources each. Food quality was determined by analysing the fatty acid composition. Stream detritus (conditioned to stream environment including autochthonous microbes) resulted in significantly higher growth rates of juvenile FPM than predominately terrestrial-based riparian detritus indicating higher food quality. Significantly positive correlations were found between mussel growth and different groups of polyunsaturated fatty acids (PUFA). This suggests that especially trace substances such as long-chained n-3 PUFAs and a high ratio of n-3 to n-6 PUFAs enhance the food quality of stream detritus for juvenile FPM. These results highlight the importance of instream conditioning of detritus for the food mix in headwater streams and the importance of PUFAs for the development of juvenile FPM.
The freshwater pearl mussel (FPM) is among the most endangered freshwater species worldwide. The few remaining populations suffer from low recruitment rates and are subject to habitat fragmentation, pollution, siltation, decline or loss of host fish populations, and climate change. Successful conservation strategies for FPM require a holistic understanding of its ecological requirements, life history, population dynamics, and habitat prerequisites. Although habitat requirements are well described, food requirements at different life stages have received less attention. Stable isotope analyses of FPM and potential food resources in three German streams were combined with mixing model analysis to quantify organic matter resources assimilated by juvenile (first year after encystment from host fish) and semi‐adult (10 years old, immature) individuals. There were only slight differences in dietary contributions between the two life stages, and terrestrial particulate organic matter and benthic organic matter contributed substantially to the diet. Tissue type was more important in explaining variation in dietary contributions than individual variation for semi‐adult FPM. The strong reliance on terrestrial resources sheds new light on the functional role of unionid mussels and the connection of streams to their riparian area. The dependence of FPM on terrestrial resources also emphasizes the need for a stronger focus on the restoration and protection of intact riparian areas, including wetlands with their specific vegetation, when planning conservation and management strategies for threatened FPM populations.
The freshwater pearl mussel Margaritifera margaritifera is an endangered bivalve which is usually regarded as sedentary, although individual movement has been observed both vertically and horizontally. Little is known about the causes and rates of mussel movement. The objective of this study was to test the effect of microhabitat characteristics on the horizontal movement distance and rates of freshwater pearl mussels. A total of 120 mussels (length range 40–59 mm) were marked individually with passive integrated transponder tags, placed in stream microhabitats differing in their sediment composition and monitored biweekly over a period of 10 weeks. Mussels situated in sand-dominated habitats had a significantly higher mean movement rate (3.2 ± 4.2 cm/day, mean ± SD) than mussels situated in gravel-dominated (1.9 ± 2.7 cm/day) or stone-dominated habitats (1.8 ± 3.2 cm/day). The direction of the movements appeared random; however, an emigration from sandy habitats was observed, probably to avoid dislodgment from these hydraulically unstable habitats. This study demonstrates that freshwater pearl mussels can actively emigrate from unsuitable microhabitats. Once suitable streams with respect to physical, chemical, and biological quality were identified, it is therefore only necessary to identify suitable mesohabitats (area of 10–30 m2) when reintroducing or relocating mussels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.