The open-source software package
SolidStateDetectors.jl to calculate the fields and simulate
the drifts of charge carriers in solid state detectors, especially
in large volume high-purity germanium detectors, together with the
corresponding pulses, is introduced. The package can perform all
calculations in full 3D while it can also make use of detector
symmetries. The effect of the surroundings of a detector can also be
studied. The package is programmed in the user friendly and
performance oriented language julia, such that 3D field
calculations and drift simulations can be executed efficiently and
in parallel. The package was developed for high-purity germanium
detectors, but it can be adjusted by the user to other types of
semiconductors. The verification of the package is shown for an
n-type segmented point-contact germanium detector. Additional
features of SolidStateDetectors.jl, which are under
development are listed.
A novel Compton Scanner setup has been built, commissioned and operated at the Max-Planck-Institute for Physics in Munich to collect pulses from bulk events in high-purity germanium detectors for pulse shape studies. In this fully automated setup, the detector under test is irradiated from the top with 661.660 keV gammas, some of which Compton scatter inside the detector. The interaction points in the detector can be reconstructed when the scattered gammas are detected with a pixelated camera placed at the side of the detector. The wide range of accepted Compton angles results in shorter measurement times in comparison to similar setups where only perpendicularly scattered gammas are selected by slit collimators. In this paper, the construction of the Compton Scanner, its alignment and the procedure to reconstruct interaction points in the germanium detector are described in detail. The creation of a first pulse shape library for an n-type segmented point-contact germanium detector is described. The spatial reconstruction along the beam axis is validated by a comparison to measured surface pulses. A first comparison of Compton Scanner pulses to simulated pulses is presented to demonstrate the power of the Compton Scanner to test simulation inputs and models.
The impurity density in high-purity germanium detectors is crucial to understand and simulate such detectors. However, the information about the impurities provided by the manufacturer, based on Hall effect measurements, is typically limited to a few locations and comes with a large uncertainty. As the voltage dependence of the capacitance matrix of a detector strongly depends on the impurity density distribution, capacitance measurements can provide a path to improve the knowledge on the impurities. The novel method presented here uses a machine-learned surrogate model, trained on precise GPU-accelerated capacitance calculations, to perform full Bayesian inference of impurity distribution parameters from capacitance measurements. All steps use open-source Julia software packages. Capacitances are calculated with SolidStateDetectors.jl, machine learning is done with Flux.jl and Bayesian inference performed using BAT.jl. The capacitance matrix of a detector and its dependence on the impurity density is explained and a capacitance bias-voltage scan of an n-type true-coaxial test detector is presented. The study indicates that the impurity density of the test detector also has a radial dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.