Recently, the advent of non-fullerene acceptors (NFAs) made it possible for organic solar cells (OSCs) to break the 10% efficiency barrier hardly attained by fullerene acceptors (FAs). In the past five years alone, more than hundreds of NFAs with applications in organic photovoltaics (OPVs) have been synthesized, enabling a notable current record efficiency of above 15%. Hence, there is a shift in interest toward the use of NFAs in OPVs. However, there has been little work on the stability of these new materials in devices. More importantly, there is very little comparative work on the photostability of FA versus NFA solar cells to ascertain the pros and cons of the two systems. Here, we show the photostability of solar cells based on two workhorse acceptors, in both conventional and inverted structures, namely, ITIC (as NFA) and [70]PCBM (as FA), blended with either PBDB-T or PTB7-Th polymer. We found that, irrespective of the polymer, the cell structure, or the initial efficiency, the [70]PCBM devices are more photostable than the ITIC ones. This observation, however, opposes the assumption that NFA solar cells are more photochemically stable. These findings suggest that complementary absorption should not take precedence in the design rules for the synthesis of new molecules and there is still work left to be done to achieve stable and efficient OSCs.
We report a single‐chain magnet (SCM) made of a terbium(III) building block and a nitronyl‐nitroxide radical (NIT) functionalized with an aliphatic chain. This substitution is targeted to induce a long‐range distortion of the polymeric chain and accordingly it gives rise to chains that are curled with almost 20 nm helical pitch. They self‐organize as a chiral tubular superstructure made of 11 chains wound around each other. The supramolecular tubes have a 4.5 nm internal diameter. Overall, this forms a porous chiral network with almost 44 % porosity. Ab initio calculations highlight that each TbIII ion possesses high magnetic anisotropy. Indeed, notwithstanding the supramolecular arrangement each chain behaves as a SCM. Magnetic relaxation with both finite and infinite‐size regimes is observed and confirms the validity of the Ising approximation. This is associated with quite strong coercive field and magnetic remanence (Hc=2400 Oe MR=2.09 μB at 0.5 K) for this class of compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.