Foliar application of micronutrients (e.g. Fe ) onto plants over an extended time is challenging and often not possible due to insufficient rainfastness. Smart delivery systems which enable micronutrient release over several weeks would offer innovative and sustainable options to improve plant health and food production. Herein, we report a novel foliar fertilizer delivery system based on functional pH-responsive biohybrid microgels that have orthogonal functionality as carriers of micronutrients and employ peptides (termed anchor peptides) as foliar adhesion promoters. The anchor peptides bind to hydrophobic surfaces and the waxy "islands" of plant leaves. Our system requires no auxiliaries and is loadable, storable, and applicable from aqueous dispersion. We report the synthesis and functionalization of microgels, their loading with Fe ions, and a proof of concept for the biofunctional microgel-based fertilizer system is demonstrated for iron-deficient cucumber plants.
Surface functionalization of biological inert polymers (e.g., polypropylene PP; polystyrene PS) with material binding peptides facilitates an efficient immobilization of enzymes, bioactive peptides or antigens at ambient temperature in water. The developed robust directed evolution protocol enables to tailor polymer binding anchor peptides (PBPs) for efficient binding under application conditions. Key for a successful directed evolution campaign was to develop an epPCR protocol with a very high mutation frequency (60 mutations/kb) to ensure sufficient diversity in PBPs (47 aas LCI: “liquid chromatography peak I”; 44 aas TA2: “Tachystatin A2”). LCI and TA2 were genetically fused to the reporter egfp to quantify peptide binding on PP and PS by fluorescence analysis. The Peptide‐Polymer evolution protocol (PePevo protocol) was validated in two directed evolution campaigns for two PBPs and polymers (LCI: PP; TA2: PS). Surfactants were used as selection pressure for improved PBP binders (non‐ionic surfactant Triton X‐100; 1 mM for LCI‐PP // anionic surfactant LAS; 0.5 mM for TA2‐PS). PePevo yielded an up to three fold improved PP‐binder (LCI‐M1‐PP: I24T, Y29H, E42 K and LCI‐M2‐PP: D31V, E42G) and an up to six fold stronger PS‐binder (TA2‐M1‐PS: R3S, L6P, V12 K, S15P, C29R, R30L, F33S, Y44H and TA2‐M2‐PS: F9C, C24S, G26D, S31G, C41S, Y44Q).
The functionalization of polymer surfaces by polymer-binding peptides offers tremendous opportunities for directed immobilization of enzymes, bioactive peptides, and antigens. The application of polymer-binding peptides as adhesion promoters requires reliable and stable binding under process conditions. Molecular modes of interactions between material surfaces, peptides, and solvent are often not understood to an extent that enables (semi-) rational design of polymer-binding peptides, hindering the full exploitation of their potential. Knowledge-gaining directed evolution (KnowVolution) is an efficient protein engineering strategy that facilitates tailoring protein properties to application demands through a combination of directed evolution and computational guided protein design. A single round of KnowVolution was performed to gain molecular insights into liquid chromatography peak I peptide, 47 aa (LCI)-binding to polypropylene (PP) in the presence of the competing surfactant Triton X-100. KnowVolution yielded a total of 8 key positions (D19, S27, Y29, D31, G35, I40, E42, and D45), which govern PP-binding in the presence of Triton X-100. The recombination of two of the identified amino acid substitutions (Y29R and G35R; variant KR-2) yielded a 5.4 ± 0.5-fold stronger PP-binding peptide compared to LCI WT in the presence of Triton X-100 (1 mM). The LCI variant KR-2 shows a maximum binding capacity of 8.8 ± 0.1 pmol/cm2 on PP in the presence of Triton X-100 (up to 1 mM). The KnowVolution approach enables the development of polymer-binding peptides, which efficiently coat and functionalize PP surfaces and withstand surfactant concentrations that are commonly used, such as in household detergents.
In this work we explored an enzyme-mediated method for selective and efficient decoration of aqueous microgels with biomolecules. Poly(N-vinylcaprolactam) (VCL) microgels with varied amounts of glycidyl methacrylate (GMA) as comonomer incorporated in the microgel shell were synthesized and characterized in regard to their size, swelling degree, and temperature-responsiveness in aqueous solutions. The surface of the PVCL/GMA microgel containing 5 mol % glycidyl methyacrylate was modified by grafting of a specific recognition peptide sequence (LPETG) for Sortase A from Staphylococcus aureus (Sa-SrtA). Sortase-mediated conjugation of the enhanced Green Fluorescent Protein (eGFP) carrying a N-terminal triglycine tag to LPETG-modified microgels was successfully performed. Conjugation of eGFP to the microgel surface was qualitatively proven by confocal microscopy and by fluorescence intensity measurements. The developed protocol enables a precise control of the amount of eGFP grafted to the microgel surface as evidenced by the linear increase of fluorescence intensity of modified microgel samples. The kinetic of the sortase-mediated coupling reaction was determined by time-dependent fluorescence intensity measurements. In summary, sortase-mediated coupling reactions are a simple and powerful technique for targeted surface functionalization of stimuli-responsive microgels with biomolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.