T he metabolic syndrome comprises a cluster of risk factors, including obesity, insulin resistance, hepatic steatosis, and dyslipidemia. It is associated with a variety of cardiovascular diseases such as atherosclerosis, myocardial infarction, and stroke.1 Chronic, low-grade inflammation in key metabolic organs such as the liver and visceral adipose tissue (VAT) Background-Costimulatory cascades such as the CD40L-CD40 dyad enhance immune cell activation and inflammation during atherosclerosis. Here, we tested the hypothesis that CD40 directly modulates traits of the metabolic syndrome in diet-induced obesity in mice. Methods and Results-To induce the metabolic syndrome, wild-type or CD40 −/− mice consumed a high-fat diet for 20 weeks. Unexpectedly, CD40−/− mice exhibited increased weight gain, impaired insulin secretion, augmented accumulation of inflammatory cells in adipose tissue, and enhanced proinflammatory gene expression. This proinflammatory and adverse metabolic phenotype could be transplanted into wild-type mice by reconstitution with CD40-deficient lymphocytes, indicating a major role for CD40 in T or B cells in this context. Conversely, therapeutic activation of CD40 signaling by the stimulating antibody FGK45 abolished further weight gain during the study, lowered glucose levels, improved insulin sensitivity, and suppressed adipose tissue inflammation. Mechanistically, CD40 activation decreased the expression of proinflammatory cytokines in T cells but not in B cells or macrophages. Finally, repopulation of lymphocyte-free Rag1 −/− mice with CD40 −/− T cells provoked dysmetabolism and inflammation, corroborating a protective role of CD40 on T cells in the metabolic syndrome. Finally, levels of soluble CD40 showed a positive association with obesity in humans, suggesting clinical relevance of our findings. Conclusions-We present the surprising finding that CD40 deficiency on T cells aggravates whereas activation of CD40 signaling improves adipose tissue inflammation and its metabolic complications. Therefore, positive modulation of the CD40 pathway might describe a novel therapeutic concept against cardiometabolic disease. T-regulatory (T reg ) cells, CD8 + T cells, and related chemokines and cytokines such as RANTES (regulated on activation normal T cell expressed and secreted) and interferon-γ (IFNγ) colocalize within the inflammatory cell compartment in adipose tissue. 7 In lean adipose tissue, the vast majority of T lymphocytes share features of anti-inflammatory, interleukin (IL)-13-, IL-4-, and IL-10-secreting Th2 or T reg cells. 8In obesity, proinflammatory Th1 cells expressing IFNγ overwhelm Th2 cells.9 Th1 cells, in turn, activate proinflammatory cytokine-secreting macrophages and promote their conversion from M2-like, IL-10-secreting, alternatively activated macrophages to classically activated, M1-like macrophages. 10,11Despite description of the kinetics of cellular infiltration and the associated cytokine/chemokine profiles during the development of obesity, the underlying cause modu...
BackgroundAdipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.Methodology/Principal FindingsWT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.ConclusionWe present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.
Cell accumulation is a prerequisite for adipose tissue inflammation. The leukocyte integrin Mac-1 (CD11b/CD18, αβ) is a classic adhesion receptor critically regulating inflammatory cell recruitment. Here, we tested the hypothesis that a genetic deficiency and a therapeutic modulation of Mac-1 regulate adipose tissue inflammation in a mouse model of diet-induced obesity (DIO). C57Bl6/J mice genetically deficient (Mac-1) or competent for Mac-1 (WT) consumed a high fat diet for 20 weeks. Surprisingly, Mac-1 mice presented with increased diet-induced weight gain, decreased insulin sensitivity in skeletal muscle and in the liver in insulin-clamps, insulin secretion deficiency and elevated glucose levels in fasting animals, and dyslipidaemia. Unexpectedly, accumulation of adipose tissue macrophages (ATMs) was unaffected, while gene expression indicated less inflamed adipose tissue and macrophages in Mac-1 mice. In contrast, inflammatory gene expression at distant locations, such as in skeletal muscle, was not changed. Treatment of ATMs with an agonistic anti-Mac-1 antibody, M1/70, induced pro-inflammatory genes in cell culture. In vivo, treatment with M1/70 induced a hyper-inflammatory phenotype with increased expression of IL-6 and MCP-1, whereas accumulation of ATMs did not change. Finally, inhibition of Mac-1's adhesive interaction to CD40L by the peptide inhibitor cM7 did not affect myeloid cell accumulation in adipose tissue. We present the surprising finding that adhesive properties of the leukocyte integrin Mac-1 are not required for macrophage accumulation in adipose tissue. Instead, Mac-1 modulates inflammatory gene expression in macrophages. These findings question the net effect of integrin blockade in cardio-metabolic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.